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This work contains a set of preliminary experiments with the objective of exploring

and optimizing the use of reasonably small text-to-text Transformers to solve classifica-

tion tasks. The broader objective is to see if we can use text-to-text Language Models, that

aren’t costly to train and deploy like the ones that are currently very popular (e.g. Chat-

GPT or LLaMa), as a unifying framework to solve any Natural Language Processing tasks.

Contrary to what we need to do with larger models, with reasonably sized Transformers we

need to find optimal way of casting the tasks into a text-to-text form, i.e. having a textual

input, and expecting a textual output from the model. This thesis focuses on classifica-

tion tasks, and in particular on the problem of how to represent class names into the best

possible strings that maximize performances for the model. First, we evaluated whether

this smaller models can obtain reasonable performances in classification tasks. Then, we

tested the importance of label representation in this settings, finding that is, indeed, im-

portant to maximize the model performances. Finally, we presented and evaluated a novel

technique to extract label representation from the training set of a classification task based

on Attention attribution explainability methods.
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Introduction

In recent years, the world of Natural Language Processing (NLP) underwent a revolution

that shook the foundation of the field. This brought results that were never achieved before

and lead to the creation of products that became commercial hits and are now popular even

among non-expert people that use them daily.

This all started in 2017, with the now classic publication Attention is all you need by

Vaswani et al., and the introduction of a new kind of Language Model: the Transformer

[Vaswani et al., 2017]. By leveraging Self-Attention, a new variation of the Attention

mechanism, the Transformer was able to learn continuous representation of words, that

captured both semantic and syntactic contextual information. The Transformer was per-

forming better and was faster than the previous generation of models built by encoder/de-

coder architecture with Attention, that instead relied mainly on LSTMs, CNNs or GRUs.

This because, while the Transformers contained a lot more parameters than the previous

models, it could do the majority of its calculation in parallel, something that models based

on the Recurrent Neural Network architecture couldn’t do.

One of the most successful iterations of this architecture was BERT, introduced in [De-

vlin et al., 2019], which ditched the decoder part of the model and placed a classification

head, a fully connected layer, on top of the encoders stack of the Transformer. Using

the contextual representation obtained by the encoder as input for the classification head,

BERT reached new state-of-the-art performances in all kind of text classification tasks.

In the following years, generative models, i.e. models that take text in input and pro-

duce text in output (text-to-text), started to get traction: in 2018, the first iteration of GPT

is published [Radford et al., 2018]; in 2019 GPT-2 [Radford et al., 2019], BART [Lewis

et al., 2019] and T5 [Raffel et al., 2019] are released; in 2020, Open-AI publishes GPT-3

[Brown et al., 2020], etc.

This trend has yet to stop, and new model architectures for text generation are published

by the day, with some of the most recent, and famous ones, being GPT-4 [OpenAI et al.,

2023] and LLaMA [Touvron et al., 2023].
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One of the attractive thing of the text-to-text paradigm is having a single model capable

of being trained to do any task that you can cast to be textual in both input and output. In

the T5 paper we read: ≪The basic idea underlying our work is to treat every text processing

problem as a “text-to-text” problem, i.e. taking text as input and producing new text as

output. [...] Crucially, the text-to-text framework allows us to directly apply the same

model, objective, training procedure, and decoding process to every task we consider≫.

By assuming that we can cast any problem in a form where we input text and accept text

as output, we can use a text-to-text model as a unifying framework, where we can compare

the effectiveness of different learning objectives, unlabeled datasets for pre-training and

many more factors. The problem lies in the assumption that we can cast any problem into

a text-to-text form, or that we can do so effectively.

Another important issue that needs to be solved is the current size of generation mod-

els. Right now, generative models have a huge number of parameters to train, some sources

seem to estimate that GPT-4 has 1.76 trillion parameters [Maximilian, 2023]. This makes

using this kind of universal model really costly at best, and inaccessible to the majority of

the people at worst. We believe that it’s important to find ways to either reduce the number

of parameters of these Large Language Models (see as an example [Bansal et al., 2023])

or to find ways to make the smaller language models better (see as an example [Schick

and Schütze, 2021]).

In this thesis we’ll focus on how to use relatively small text-to-text models to solve

classification tasks effectively. In particular, we chose to focus on how to cast them in a

text-to-text form, by trying to solve the issue of how to choose the words that represent the

classes of our classification task. These are the words that our model should produce when

predicting, e.g. if we are doing Sentiment Polarity classification, which word should the

model produce to tell us that a certain sentence have a Positive polarity? Should it generate

the word positive, or the word good? Or maybe something else entirely, that doesn’t have

semantic connection to the task. Does it even matter which word the model is going to be

fine-tuned with?

We decided to focus on three specific research questions, that this thesis will try to provide

the answers for:
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• Can text-to-text models classify successfully?

• How important are label representation for performances?

• Can we find a way to choose the optimal label representations?

In the first chapter, the main theoretical concept needed to understand the experiments

are going to be presented, starting from traditional language models, up to the Transformer

architecture and the Attention attribution explainability method that have been used for the

experiments.

In the second chapter the dataset and models that have been used for the experiments

are going to be presented. For the dataset, the pre-processing steps applied to it are going to

be discussed, while for the models, some of the modifications to the standard architectures

that were necessary to make the model work in our experimental settings are going to be

presented.

Finally, in the third chapter the experiments will be presented: first we evaluated

whether a relatively small generative model could be used for classification, then an analy-

sis on the importance of label representation choice for the performance of the model will

be presented, and, to conclude, a novel heuristic to choose representation for the task’s

classes based on Attention attribution techniques will be presented and evaluated.

Some of the results of this thesis have also been published as articles for the proceed-

ings of two different conferences: [Papucci et al., 2022] has been published to the Pro-

ceedings of the Sixth Workshop on Natural Language for Artificial Intelligence (NL4AI

2022) co-located with 21th International Conference of the Italian Association for Artifi-

cial Intelligence (AI*IA 2022) the 21st of November, 2022; [Papucci et al., 2023] has been

published at the Proceedings of the 9th Italian Conference on Computational Linguistics

(CLiC-it 2023) the 28th of November, 2023.
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1. State of the Art

In this chapter the key theoretical concepts needed to understand the rest of the chapters

are introduced, including the experiments and the considerations made on them. In par-

ticular, this chapters is going to introduce what Language Models are, starting with some

historical models that were used to solve Natural Language Processing tasks, and finish-

ing with the latest Large Language Models based on Transformers. In particular, we’ll

see two specific Transformers architectures that are the ones that have been used for the

experiments. Finally, an explainability technique based on Attention attribution, Value-

Zeroing, will be explained, that will provide the theoretical background to understand the

Label Representation Selection method presented in Chapter 3.

1.1 Traditional Language Models

A Language Model is a model that assigns probabilities to sequences of words, so, given a

sequence of words X = {x1,x2, ...,xn} the Language Model (LM) outputs the probability

p(X) = p(x1,x2, ...,xn) of observing that sequence of words, in that order.

Of course, actually modelling the human language is a hard and computationally intensive

task, so some simplifications needed to be made. The standard solution was, instead of

creating a model of the language from zero, trying to learn the probability distribution of

words by estimating them from a large text corpora1. The idea is that by using big enough

corpora we obtain a good estimate of the distributions of words in a language.

1.1.1 Probabilistic Language Models

The first iterations of Language Models were built using probabilistic models trained on

large corpora of texts. Some notations will be introduced that will be useful for the rest

of the chapter. To represent the probability of a random variable Xi taking on a value like

1A collection of texts. In the context of language analysis and natural language processing these are used

as training data for the models.
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Luca, or P(Xi = Luca) the simplification P(Luca) will be used; also, given a sequence

of words w1, ...,wn (or w1:n), the joint probability of each word in the sequence having a

particular value P(X1 = w1,X2 = w2, ...,Xn = wn) will be represented as P(w1,w2, ...,wn).

Using these notions, we can represent the joint probability of observing a particular words

sequence by applying the Chain Rule of Probability and decomposing it to a series of

conditional probabilities:

P(w1)P(w2|w1)P(w3|w1:2)...P(w|w1:n−1)

= P(w1)
n

∏
k=2

P(wk|w1:k−1)
(1.1)

The problem with equation 1.1 is that we don’t know how to compute the exact probability

of a word given a long sequence of preceding words P(wn|w1:n−1). This is because we

can’t just estimate it by counting every time that a word appears after a certain sequence,

because language is creative and we could encounter contexts that have never appeared

before. There is also some computational constraints for calculating the probability of

a word given a long context. For these reasons probabilistic models had to find astute

approximations to learn word distributions.

1.1.2 N-grams

The idea behind N-grams is to limit the amount of context we use to compute the prob-

ability of observing a certain word. This is a Markov assumption, i.e. we assume that

the stochastic process is memory-less and that we can predict the next state by using as

information only the current state. In practice, most of the time we use Markov Chains

[Markov, 1913] of order greater than one so, instead of using just the current state as infor-

mation, we can look back at N-1 steps where N is the order of the N-gram. For example,

in a bigram2 model, instead of computing the probability of:

P(mela|Luca mangia la) (1.2)

we calculate the probability of:

P(mela|la) (1.3)

2A N-gram model with N = 2.
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We are making the following approximation:

P(wn|w1:n−1)≈ P(wn|wn−1) (1.4)

We can generalize the model to work with a context of arbitrary length N, thus obtaining a

N-gram. So, for calculating the probability of a certain word, the model looks N-1 words

in the past:

P(wn|wn−N+1:n−1) (1.5)

The problem of estimating these N-grams probabilities remains, which can intuitively be

solved using Maximum Likelihood Estimation (MLE). Given a certain corpus, we can

count all the occurrences of all the possible N-grams in the texts, and then normalize the

counts of each one so that we obtain a probability of observing any specific N-gram.

For example, for a bigram model, we’ll compute the count of the bigrams C(wn−1wn) and

then normalize it by the sum of all the bigrams that share the same first word wn−1. In this

case, we can simplify the denominator, since the number of bigrams that starts with wn−1

is equal to the number of unigrams of wn−1:

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(1.6)

1.1.3 Hidden Markov Models

The Hidden Markov Models (HMM) were first introduced in [Baum and Petrie, 1966]

as an augmentation of the Markov Chains earlier described in Section 1.1.1. The idea

is to use hidden information in the text to compute words probabilities. As we know,

language is a complex phenomenon, and using just the co-occurrence of words doesn’t

capture the deep relationship between words. For example, we know that some words are

part of the same grammatical classes as others, and while they are not interchangeable

with one another, their class gives to the speakers grammatical clues to what word may

come next. For example we know that in English after an adjective there is probably going

to be either another adjective or a noun, and in Italian after an article we are more likely

to find a noun rather than an adverb.

14



The Hidden Markov Model tries to capture these phenomenons using discrete hidden ran-

dom variables that represent some classes that are discovered and learned during the train-

ing process.

Figure 1.1: Example graph of a Hidden Markov Model.

Formalizing, an HMM is composed of:

Q = q1,q2, ...,qN a set of N states;

A = a11, ...,ai j, ...,aNN a transition probability matrix A where each ai j represents the

probability of moving from state i to state j, s.t. ∑
N
j=1 ai j = 1 ∀i;

O = o1,o2, ...,oT a sequence of T observations, each drawn from a vocabulary V =

v1,v2, ...,vV ;

B= bi(ot) a sequence of observations likelihoods, or emission probabilities, each express

the probability of emitting ot from state qi;

π = π1,π2, ...,πN an initial probability distribution for the states. πi is the probability

that the Markov Chain will start in state i. Some states may have an initial probability of

zero. Also ∑
n
i=1 πi = 1.

With a trained model we can use the transition probabilities and the emission prob-

abilities to find the optimal state from which to emit the correct next word. The opti-

mal state problem is solved through the use of a dynamic programming algorithm called

Viterbi algorithm.

The model is trained using the Expectation Maximization (EM) algorithm which is an

iterative two steps algorithm:
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1. E-step (Expectation step): in this step, the algorithm estimates the expected values

of the hidden variables (in the case of HMM, the states) given the current estimate

of the model parameters. This is typically done using the Forward-Backward algo-

rithm;

2. M-step (Maximization step): in this step, the algorithm maximizes the expected

likelihood function with respect to the model parameters (transition probabilities,

emission probabilities, and initial state probabilities) given the hidden variables es-

timated in the E-step. The aim is to adjust the parameters of the model in a way that

maximizes the probability of the observed data. This step recalculates the values of

A, B and π , using the probabilities computed in the E-step.

Hidden Markov Models can also be used with labeled data and can be trained to be

classifiers. They have been used for a lot of different NLP applications, such as Part-of-

Speech Tagging [Kupiec, 1992] and Speech recognition [Baker, 1975].

1.1.4 Conditional Random Fields

While HMM are useful and powerful models, to achieve a high accuracy they need a

number of augmentations. For example: when PoS-Tagging, the model could encounter

an unknown word that it never saw during training (e.g. proper names or new acronyms).

To help with handling those cases it would be useful to inject some prior knowledge into

the model, e.g. give a higher probability to a word with a capitalized first letter to be rec-

ognized as a proper noun, or, if a word is composed of only letters and dots, understanding

that is probably an acronym.

One way to do that is to use Conditional Random Fields (CRF) [Lafferty et al., 2001a],

that are a discriminative counterpart of the HMM. Instead of learning the joint distribu-

tion of the observations, they learn to model the conditional probability of some annotated

classes given the observations.
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Figure 1.2: Difference between HMM and CRF. ft replaces the transion probabilities

between states, while fe replaces the emission probabilities of the states.

The key difference to HMM is that CRFs are modeled as an undirected graph, where

we have both hidden random variables and observed random variables (the sequence),

then, instead of the transition probabilities and emission probabilities, we have feature

functions. Feature functions are hand-engineered functions that give a score to some

preferred configurations. By taking the previous example into consideration, we could

have a function that give a high score for the proper noun class when encountering a

word with a capitalized first letter in a PoS-Tagging scenario. Using these, we can model

specific linguistic phenomena we think could be useful to help the model discriminate

between classes. These functions are the ones that inject prior knowledge into the model.

The model is trained through Maximum Likelihood Estimation of its parameters, which

is solved by gradient descent.

CRFs have successfully been used for a variety of NLP tasks [Lafferty et al., 2001b] such

as Named Entity Recognition [Settles, 2004] and Shallow Parsing [Sha and Pereira, 2003].

1.2 Neural Networks and Neural Language Models

The Neural Networks are so called because their origins lie in the McCulloch-Pitts Neu-

ron [McCulloch and Pitts, 1943] which was a simplified model of a human neuron. It

was used as a computing element, and was described using propositional logic. The name

stuck, even if modern Neural Networks no longer share this biological inspiration.
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Figure 1.3: Schema of a single unit with three inputs (plus bias).

The basic unit of a network is a single computational unit, that, in the most basic

terms, does a weighted sum of its inputs (which are real valued numbers) plus a bias

term3. Given a set of inputs x1,x2, ...,xn, a set of learned weights w1,w2, ...,wn and a bias

b, the weighted sum z is represented as:

z = b+∑
i

wixi (1.7)

This can be represented in vector notation using a dot product (·):

z = w ·x+b (1.8)

The last important step in the basic unit of a network is that we don’t use z directly, which is

a linear function of x, but we apply a non-linear function f to z, obtaining a, the activation

of the unit, also commonly indicated as y:

y = a = f (z) (1.9)

1.2.1 Feed Forward Neural Networks

One of the most important feature of Neural Units is their capabilities to be combined into

networks, which improve their performances and capabilities greatly. A clever demon-

stration of the need of having multi-layer networks was the proof of [Minsky and Papert,

1969] that a Perceptron (a unit, like described before, but without the non-linear activation

function) can’t compute the logic XOR operation of its inputs.

3The units, before the activation functions, learn a linear function. The bias is the term of that function

that allows shifting, i.e. y = ax+b the weight matrix models the a, while the bias models the b.
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After [Goodfellow et al., 2016], the standard solution to the XOR problem is using two

layers of units with ReLU4 as the activation function.

Figure 1.4: Schema of a Feed Forward Neural Network with two layer: an input layer and

a hidden layer.

A Feed-Forward Neural Network (FFNN), or a Multi-Layer Perceptron (MLP), is a

multi-layer network of fully connected units with no cycles, where each unit has in input

all the outputs of the previous layer. The most important part of the Neural Network is

the Hidden Layer h, where each unit hi works as described in Section 1.2. Being fully

connected, each hidden unit sums over all the inputs unit.

The parameters of a single layer are represented as a weight matrix W and a single bias

vector b. Each element Wi j represent the weight of the connection from unit i to unit j.

Using matrix notation, and assuming we are using a sigmoid as the activation function, we

can compute the activation h of the entire layer as:

h = σ(Wx+b) (1.10)

From Figure 1.4 we see that the output layer has a weight matrix U, and using the various hi

as input we can calculate its activation z. However, z is not a useful output since is a vector

of real numbers. Normalization techniques such as Softmax are used to scale these values

in a range from 0 to 1 with a sum to 1 constraint. This gives us what can be interpreted

4ReLU is an activation function defined as the positive part of its argument f (x) = x+. It was first

introduced in the context of Neural Networks by [Hahnloser et al., 2000].
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as a vector of probability. For example, in a classification scenario, if we have an output

layer with a number of units equal to the number of classes we need to discriminate, the

softmaxed output vector can be interpreted as the probability of the inputs xi of being part

of each of those classes. In equation, the two-layer network we described, that takes an

input vector x, outputs a probability distribution y, is parameterized by weight matrices W

and U, and a bias vector b (the output layer usually does not have a bias vector), is defined

as:

h = σ(Wx+b) (1.11)

z = Uh (1.12)

y = so f tmax(z) (1.13)

FFNNs for Language Modeling were first proposed by [Bengio et al., 2000]; this was be-

cause learning words distribution with a neural network has many advantages compared

to other techniques (such as N-grams): they can handle longer contexts, can generalize

better over similar words and are more accurate at word-prediction. This, however, comes

at the price of complexity, speed and interpretability. In fact, Neural Language Models

are slower, have a more complex architecture and are considered black-boxes, i.e. their

inner workings are hard to interpret and usually meaningless for a human.

A Feed Forward Neural Language Model (ML) is defined as a FFNN that takes as input,

at time t, a representation of some number of previous words, and outputs a probability

distribution over possible next words. Like for N-Grams (Section 1.4) we are approximat-

ing the context to N-1 words.

In Neural Language Models, words are represented through embeddings, which capture

more contextual information than mere word identity, as seen in traditional N-gram mod-

els. Embeddings are continuous representations of words, and usually they are vector of

size equal to the hidden size of the network, and their values are simply the activation of

the hidden neurons when the word is seen as input. This approach enhances the model’s

ability to generalize to new, unseen data. For instance, if a model trained on the phrase

“the cat gets fed” encounters a similar but unseen phrase like “the dog gets” the model

should be able to intelligently predict the following word “fed” by recognizing the con-
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textual similarity between “cat” and “dog” through their embeddings. This capability is

not present in N-gram models, which rely strictly on previously observed word sequences.

Feed Forward Neural Networks are trained through the use of a loss function which is

usually the cross-entropy loss. For hard classification tasks5 such as Language Model-

ing, we deal with two vectors: y is a vector of size K, where K is the number of classes,

each element is 0 except for the correct class for that example which has value equal to 1

(it’s called a one-hot vector), while ŷ is the output of the Neural Network last layer, being

of size K, and each elements contains the predicted probability for the example of being

part of that class. The loss function for a single example x is the negative sum of the logs

of the K output classes, each weighted by their probability yk. Being that y is always 0

except for the correct class, we can write the loss function as:

LCE(y, ŷ) =−log(ŷc) (1.14)

where c is the index of the correct class. This is called negative log likelihood loss, as it’s

the negative log of the output probability corresponding to the correct class.

To actually update the weights of the network to make it learn, the Error Back-Propagation

technique is used. It was introduced in [Rumelhart et al., 1985a], and the idea is to calcu-

late the gradient of the loss function by calculating the partial derivative of the function

with respect of each parameter. To calculate the error, and then update every parameter in

the network, we need to do a backward pass: starting from the last layer, and by applying

the chain rule of gradients, we can go back through the net to calculate how each weight

contributed to the error. Then, we update each parameter using the calculated errors ac-

cordingly.

1.2.2 Word2Vec

In previous section we assumed that words were represented as either a one-hot encoding

vector of size of our vocabulary V , or as the vector of the hidden layer activation of the

network. Another traditional technique is using a vector with size N, where each n ∈ N

5Hard classification tasks are such that only one class is the correct one across the various options.
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is a linguistically defined, hand-crafted feature that should help discriminate that word, or

sentence, from the others.

A better approach to encode information is Word2Vec, which transforms a word into a

dense vectorial representation. The idea is to represent words using real numbers in a

vector space with a pre-defined number of dimensions.

The main algorithm to do so is called skip-gram with negative sampling (SGNS), which

is one of the two algorithms available in a software package called word2vec [Mikolov

et al., 2013a], and is commonly referred to with that name. The intuition is that, instead

of counting the co-occurrence of words in sentences, a binary classifier can be trained to

predict how likely are two words in a sentence to be near each other. Then, once the model

is trained, we can use its learned weights as embeddings. Word embeddings can be used as

inputs to a variety of different tasks, such as token-level classification or, by aggregating

them, for sentence-level classification.

The key part here is that, through a process called Self-Supervision, raw data can be used

to train the model: for each word, we can choose a neighboring word as a positive example,

and a random one from the whole dataset as a negative example. With this, annotated data

is not needed, and the vast amount of free, raw text can be leveraged.

The key steps are:

1. Constructing the dataset. For each word w in the text:

(a) Treat w and a random neighboring word as positive examples for the classifier;

(b) Sample random words from the text as negative examples for the classifier;

2. Train a Logistic regressor to distinguish beetwen the two cases;

3. Extract the learned weights of the classifier as embeddings.

The learned embeddings are static, since they aren’t constructed using any contextual in-

formation. This means that for polisemic words there is just one vectorial representation,

regardless of the true meaning of the word in a specific context. However, even with

its shortcomings, word2vec embeddings have been showed to have interesting semantic

properties. For example, some works [Mikolov et al., 2013b, Levy and Goldberg, 2014]
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demonstrated that these embeddings had capabilities to solve semantic analogies prob-

lems. One of the most famous one is that the vector obtained by doing
−−→
King+

−−−−→
Woman is

similar to the one of
−−−→
Queen. Similarly,

−−−→
Paris−−−−−→France+

−−→
Italy results in a vector that is

similar to the one of
−−−→
Rome. The embedding model thus seems to be capable of extracting

complex semantic relations between words, such as MALE-FEMALE or THE-CAPITAL-OF.

Figure 1.5: The parallelogram model for analogy problems. The location of
−−→
vine can be

found by subtracting
−−−→
apple from −−→tree and then adding −−−→grape.

These kind of operations resembles the parallelogram model [Rumelhart and Abra-

hamson, 1973] shown in Figure 1.5. However, this method doesn’t work well for other

kinds of relations as demonstrated in various works [Linzen, 2016, Gladkova et al., 2016,

Schluter, 2018].

1.2.3 Recurrent Neural Networks for Sequences: LSTM and GRU

Language is inherently a temporal phenomenon; humans produce both spoken and written

languages as a continuous stream that unfolds over time. This core fact about language

has led many algorithms to try and include the temporal factor of language inside their

inner workings, one example being the previously cited Viterbi algorithm for HMMs.

Vanilla Neural Networks however can only look at a fixed-size window of words, and

don’t have a temporal nature, accessing all inputs simultaneously. Recurrent Neural

Networks (RNNs), and their variants such as Long-Short Term Memory and Gated Re-

current Units, are a kind of neural networks that provide a mechanism that allows them

to handle the temporal nature of language in their recurrent connections, making the
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models capable of having no fixed-size window to the past, and keeping as context every

previous words in the sentence. The idea is to have a single set of parameters for each

time-step: a single word representation is passed through the network at a time, and by

doing so, the network keeps building an internal representation of the sentence up until

that point.

One of the main issues with Neural Networks is the so called catastrophic forgetting

[Goodfellow et al., 2013]. This happens when, during the back-propagation, the chain rule

is applied to the calculated partial derivative. Since some of the most popular activation

function, such as the sigmoid, have a lower than zero cap on their derivative (the sigmoid

only goes up to 0.25), this lower than one values are constantly multiplied together when

chaining the gradients, resulting in ever shrinking numbers, and as a consequence, ever

shrinking updates to the weights of the network. This can reach a point where learning

becomes very hard or impossible. This mechanism is called gradient vanishing, and was

first described in [Hochreiter, 1998]. This problem appears very plainly when trying to

train Vanilla Recurrent Neural Networks, and the search for a solution led to the creation

of gated architectures.

The idea of the first proposed gated architecture, the Long-Short Term Memory (LSTM)

[Hochreiter and Schmidhuber, 1997] is to have a central memory, called Constant Error

Carousel (CEC), to store information into. Then, the access to the CEC is regulated by

two essential parameterized gates: one to write information on it; one to read out informa-

tion from it.

Figure 1.6: Differences between a LSTM cell and a GRU cell.
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LSTM works by implementing three gates: the Input Gate, which controls what part

of the inputs are written in the CEC, the Forget Gate, which controls which part of the

previous activation needs to be forgotten, and the Output Gate, which decides which part

of the CEC must be outputted. All three gates are parameterized with their own sets of

weights and biases:

It = σ(WIaat−1 +WIinxt +bI) (1.15)

Ft = σ(WFaat−1 +WFinxt +bF) (1.16)

Ot = σ(WOaat−1 +WOinxt +bO) (1.17)

Using the input and the activation at the previous time-step, the input potential is calcu-

lated:

gt = tanh(Waat−1 +WIinxt +ba) (1.18)

The input potential represent what could be written in memory. To actually being written

in the CEC, first the previous CEC state is weighted using the Forget Gate activation,

which decides what to forget. Then, the input potential is weighted with the Input Gate

activation, which decides what to store, and the two are added together, obtaining the new

internal state:

Ct = It ·gt +Ft ·Ct−1 (1.19)

Finally, the cell activation is calculated by passing the CEC state through a hyperbolic

tangent function, and weighting the output with the Output Gate activation, which decides

what to show to the outside from the internal memory:

at = Ot · tanh(Ct) (1.20)

Gated Recurrent Unit (GRU) [Chung et al., 2014] was proposed later as a cheaper

alternative to the LSTM. In fact, GRU cells have fewer parameters, while their perfor-

mances on most tasks are comparable to the ones of LSTM cells. GRUs have only two

gates: Reset and Update Gates:

zt = σ(Wzcct−1 +Wzinxt +bz) (1.21)

rt = σ(Wrcct−1 +Wrinxt +br) (1.22)
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Differently from the LSTM, there is no CEC or any other form of internal state, but by

using the Reset and the Update Gate combined, the model calculates its output and only

the cell activation is propagated through the future. Basically, what in the LSTM was the

input potential is calculated as:

ct = tanh(Whhct−1 +Whinxt +bh) (1.23)

And then the activation is calculated as the Update Gate-weighted input potential, plus the

previous activation weighted by the inverse of the Update Gate:

ct = (1− zt) · ct−1 + zt · ct (1.24)

These kind of networks are trained similarly to Feed-forward Networks, however the

back-propagation algorithm needs to be adjusted for their recurrent nature. In particular,

the new back-propagation is a two-pass algorithm: in the first pass the network computes

the hidden state and the output, accumulating the loss while doing so; in the second pass,

the sequence is processed in reverse, computing the required gradients and saving the error

term. This is then used to updated the hidden layer for each step backward in time. This al-

gorithm is called Back-Propagation Through Time [Werbos and John, 1974, Rumelhart

et al., 1985b, Werbos, 1990].

The way these RNNs cells are used is by stacking layers of them one on top of the

other, with the output of a certain layer feeding the input of the layer on top of it. Then,

based on the type of task the network is used to solve, a final layer can be used to do

classification or regression.

LSTMs have been successfully used for a variety of NLP tasks such as Handwriting

Recognition [Graves et al., 2007] and Speech Recognition [Graves et al., 2013]. One

of the main variants that became successful was using a bidirectional RNN, where two

RNNs were placed in parallel in the network, analyzing the same sequence, one from left

to right and the other from right to left. Then the two cell activation were used together

by combining them [Schuster and Paliwal, 1997]. Using pre-trained word embeddings

from word2vec (see Section 1.2.2) or GloVe [Pennington et al., 2014] as input for RNNs

also became quite popular, dominating performances on a variety of tasks, such as Part-of-
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Speech Tagging [Ling et al., 2015], Named-Entity Recognition [Chiu and Nichols, 2016]

and Semantic Role Labeling [Zhou and Xu, 2015].

1.2.4 Encoder-Decoder RNNs and Attention

One of the evolution of the RNNs architecture was the creation of the Encoder-Decoder

model pioneered by [Kalchbrenner and Blunsom, 2013]. The model consists of three

parts:

1. An Encoder, that accepts a sequence and generates a representation. For the En-

coder, any architecture capable of handling sequences can be employed;

2. A context vector, that conveys the essence of the input to the Decoder;

3. A Decoder, which accepts the context vector and generates an arbitrary length se-

quence of hidden states from which a corresponding sequence of outputs can be

obtained. As the Encoder, any architecture capable of handling sequences can be

employed.

Figure 1.7: An example of an Encoder-Decoder model. The context vector is a function

of the hidden activation of the Encoder and it may be used by the Decoder in a variety of

ways.

The main problem of the model is that the context vector must be able to represent

absolutely everything needed from the source sequence, since is the only thing that the

Decoder sees about the starting text.
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The solution to this bottleneck problem is the Attention mechanism. The Attention

Module is placed between the Encoder and the Decoder; it receives each hidden state

produced by the Encoder when encoding the sequence, and also receives a context in-

formation vector from the Decoder. With these information the module can attend more

certain parts of the inputs that are revealed to be more important to the current context.

Figure 1.8: The inner workings of an Attention Module, placed between Encoder and

Decoder. Where h1,h2, ...,hn are the hidden state of the Encoder at different time steps, S

is the context information given by the Decoder.

The first step in the Attention Module is to determine the relevance of each input hid-

den state with respect to the contextual information S. To do so, the vector S is combined

with each hidden state ht . This can be done with something as simple as a dot product or

as complex as using a Multi-Layer Perceptron. The important part is that for each hidden

state h1,h2, ...,hn we get a scalar indicating how much the two vector align. Then, these

scalars e1,e2, ...,en are normalized using a Softmax. The output of a Softmax are n scalars

α1,α2, ...,αn, ranging from 0 to 1, that indicate how important are each of the hidden state

vector for the contextual information fed to the Attention Module. These are then used

to compute a context vector to be fed to the Decoder module by doing an α-weighted

aggregation:

C =
n

∑
i=1

αihi (1.25)
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During the decoding part, the previous hidden state of the Decoder is fed to the Attention

Module as the contextual vector S for each decoding step.

Figure 1.9: An example of Attention matrices for a translation task from French to English.

The α values can also be visualized to see which input information are used during

each decoding step: these matrices are called Attention matrices. An example of such is

visible in Figure 1.9, taken from [Bahdanau et al., 2016].

1.3 Transformers

Transformers architectures are now the standard tool to do Language Modeling and to

solve most NLPs tasks. Like the RNNs of the previous section, Transformers can handle

distant relations, but unlike those architecture they don’t rely on recurrent connections.

Transformers are based on the Encoder-Decoder architecture, where the Encoder maps an

input sequence X = (x1, ...,xn) to a sequence of continuous representation Z = (z1, ...,zn),

and the Decoder generates from Z an output sequence (y1, ...,ym) one step at the time.

Transformers are made of blocks, each of which is composed by a series of layers. The

core innovation in Transformers is the Self-Attention layer, which is a specialization of

the classic Attention Module, that allows the network to directly extract and use infor-
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mation from arbitrarily large contexts without the need to pass it through intermediate

recurrent connections, as it was the case in RNNs.

1.3.1 Self-Attention Layer

The inputs for the Self-Attention layer are three matrices, each containing a linearly trans-

formed embedding of each element of the input sequence. The three matrices Q (Query),

K (Key), V (Value), are obtained by applying three learned sets of weights to the input

sequence:

Q = WQ ·X

K = WK ·X

V = WV ·X

(1.26)

The matrices are of size [sequence length, dk] where dk is the size of the key vector6.

Then, each Query vector is compared to each Key vector to calculate a similarity score.

This is usually implemented by the means of a simple dot product:

score(Q,K) = Q ·KT (1.27)

Then, these scores are normalized through the use of a Softmax function:

attention weights = so f tmax(
score(Q,K)√

dk
) (1.28)

Then, we can use the obtained attention weights to calculate the output by doing a weighted

sum with the Value vector:

attention weights ·V (1.29)

The Self-Attention calculation is usually written by compacting all the previous steps:

Sel f Attention(Q,K,V ) = so f tmax(
Q ·KT
√

dk
) ·V (1.30)

6Technically, each vector has its own size dq, dk and dv, however, these are usually set to be the same. In

particular, dk and dq have to have the same dimensions to obtain a straightforward computation of the next

step, which is the score calculation by the means of a dot product. While dv could technically be different,

it usually isn’t when the models are implemented.
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We can see how the formulation for the Self-Attention is basically the same as the

one we previously described for the Attention Module in Encoder-Decoder RNNs (See

Section 1.2.4). In fact, Self-Attention is simply a specialization of the Attention Module,

where the three inputs for the Attention calculation (the context vector C, the Encoder

hidden states h, and the Decoder hidden states s) are swapped for linear transformation of

the input. This means that we can calculate the output of the module, without relying on

hidden states provided by RNNs.

In practice, these layers in a Transformer model compute a variation of the Self-

Attention called Multi-head Attention. The difference is that this version computes mul-

tiple Self-Attention outputs in parallel and then concatenates the outputs. This means that

for each head, dk, dq and dv are going to be set as dmodel
h , where dmodel is the hidden size

used for all the Transformer layers and residual stream, while h is the number of heads in

each Self-Attention layer.

MultiHeadAttention =Concat(headi, ...,headh)WO

headi = Sel f Attention(QWQ
i ,KWK

i ,VWV
i )

(1.31)

where the weight matrices are: WQ
i with dimension [dmodel , dq]; WK

i with dimension

[dmodel , dk]; WV
i with dimension [dmodel , dv]; WO with dimensions [hdk, dmodel]. The

purpose of WO is to map the output of the Multi-head Attention back to size dmodel . Using

multiple heads allows the model to project each input into h different sets of transfor-

mation, and to jointly attend to information from different representation sub-spaces at

different positions, which can’t be done with single Attention head.
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1.3.2 The Vanilla Transformer

Figure 1.10: The Vanilla Transformer Architecture. The Encoder being on the left and the

Decoder on the right. Image taken from [Vaswani et al., 2017].

The standard Transformer (or Vanilla) is composed by a stack of Encoders and a stack

of Decoders. In the Encoder part of the model, the input sequence passes through an

Embedding Layer that projects each token in the sequence into a vector of size dmodel .
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One of the things that the Transformers lost from the previous generation of RNNs is

the concept of time. RNNs looked at each element in a sequence in an ordered matter and

built a hidden state sequentially. This, however, is not how Transformers work: as we saw

in Equation 1.30, all the tokens are processed in parallel. To give back a sense of time

to the model, Positional Encodings are added to the input matrix X. There are a number

of different ways to represent time, some techniques inject simple alternating pattern to

the tokens’ embedding, others, instead, learn linear maps to weight the token embeddings

[Gehring et al., 2017].

Then, the inputs enter the Encoder stack. Both the Encoder and the Decoders blocks

are characterized by having a skip connection before each layer. Each output of each layer

is summed and then normalized7 with the input of the layer. This stream of information,

to which each layer contributes to, is called Residual Stream. As we can see from Figure

1.10, after the Positional Encoding the stream is split, and after the first layer (Multi-head

Attention) it’s added back together.

In the Encoder block, the inputs first go through the Self-Attention layer, and then

trough Multi-Layer Perceptron. The MLP is usually made of an input layer of size dmodel ,

a hidden layer of size 4dmodel
8 and an output size of dmodel . The MLP also has a non-linear

activation function (usually a GeLU or a ReLU) and is the main non-linear calculation

point of the Transformer.

In the Decoder Block the first steps are the same, but instead of feeding it the input

sequence, the Decoder is fed the generated sequence up until that point. The two blocks

work the same, but before doing the Multi-head Attention, the target sequence passes

through a Masked Multi-head Attention Layer, which functions the same as the normal

one, but is only allowed to attend to earlier positions in the target sequence. This is done

by masking future positions (setting them to -inf) before the Softmax step in the Self-

Attention calculation. At the end of the Decoder we have a linear layer that maps the final

7The normalization is used to make the Residual Stream vector have mean equal to 0 and variance equal

to 1.
8The hidden size of the MLP being 4dmodel is really just a convention, the important idea is that the MLP

projects the dmodel Residual Stream onto a bigger space, where the model goes through non-linearity in the

form of the activation function, and is then projected back to a dimension equal to dmodel .
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residual stream vector of sized dmodel , to size dvocab. By using a final Softmax layer we

obtain the probabilities over the vocabulary.

1.3.3 Training a Transformer

Being a Neural Network, Transformers are trained trough gradient-descend learning by

iterating over examples. However, to learn rich representation, usually their training is

split in two phases.

In the Pre-training phase the model learns trough self-supervision (similarly to what

w2v does, see Section 1.2.2) leveraging huge amount of raw textual data. To do this,

the model goes through the effort of completing pre-training objectives (some of these

objectives that are used to train BERT and T5 will be presented in the models’ respective

sections). This is the most costly phase of the training, and is where the model learns

contextual representation for tokens that contains both semantic and morpho-syntactic

information.

In the Fine-tuning phase the model is trained using a relatively small amount of la-

beled data used to teach it the target task.

1.3.4 BERT

Bidirectional Encoder Representations from Transformers (BERT) [Devlin et al., 2019]

was the first breakthrough implementation of the Transformer architecture, reaching new

state-of-the-art performances and growing rapidly in popularity. BERT uses only the En-

coder part of the Transformer and learns bidirectional representation using both the left

and right context of a word in the input sequence. BERT is pre-trained using two pre-

training tasks:

1. Masked Language Modeling (MLM): is a pre-training objective where some per-

centage of the input is masked, and the model has to predict which token has been

masked (See Figure 1.11 for an example);

2. Next Sentence Prediction (NSP) is a pre-training objective where the model is

presented a single input that contains two sentences separated by a special token.
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The model has to output whether the two inputs sentences are consequent or not.

Figure 1.11: The Masked Language Modeling prediction task. Taken from [Lample and

Conneau, 2019].

The original BERT was pre-trained on two datasets, the English Wikipedia and the Book-

Corpus [Zhu et al., 2015]. During the fine-tuning phase, BERT learns to solve classifica-

tion tasks leveraging the information acquired during the pre-training phase of its train-

ing. BERT reached new state-of-the-art performances of famous and highly competitive

benchmarks such as GLUE [Wang et al., 2019] and SQuAD [Rajpurkar et al., 2016].

From BERT then spawned a family of BERT-like model that improved upon the origi-

nal concept, like RoBERTa [Liu et al., 2019], that improved the original BERT by training

the architecture with more data, for more time, removing the NSP pre-training objective

and changing the masking system to a dynamic one, or ALBERT [Lan et al., 2020], that

is a lighter version of BERT, that uses parameter reduction technique to make the model

computationally cheaper to train and infer with. Most of these models than received either

multilingual or localized trained version for a variety of languages.

1.3.5 T5

Text-To-Text Transfer Transformer (T5) [Raffel et al., 2019] is a vanilla Transformer pre-

trained using the Colossal Cleaned Crawled Corpus (C4), a collection of text took from

the Common Crawl Project9, which was presented in the same article. While the original

T5 was trained only on English text, a series of multilingual or localized version of T5

9Common Crawl Project website: https://commoncrawl.org/
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have then been published such as ByT5 [Xue et al., 2022], IT5 [Sarti and Nissim, 2022],

AraT5 [Nagoudi et al., 2022], etc.

Text-to-Text Framework

Figure 1.12: The T5 text-to-text framework, every task is cast to feed the model textual

inputs and training it to generate some target text. In the image we see translation, classi-

fication, regression and generation tasks. Taken from [Raffel et al., 2019].

The idea behind T5 is to create a text-to-text framework that can be used for any kind of

task. As we see in Figure 1.12, the objective is to have a single model that generates text,

and use it to solve various kind of tasks, like classification, regression, generation etc. To

do so, each task has to be cast to have both textual input and output. This means that

for a classification task, each possible output class needs to be verbalized, i.e. each class

needs to have a specific output sequence associated to it. For example, in a Sentiment

Polarity classification task with two classes, POSITIVE and NEGATIVE, each need to be

associated with some output sequence that the model will output when it want to predict

that class (e.g. for POSITIVE the word good and for NEGATIVE the word evil).

To facilitate this kind of generalization capabilities in the pre-trained model, T5 is

usually pre-trained in two phases, using different pre-training objectives:

1. Masked Language Model task: this self-supervised phase consists in corrupting

parts of the text by masking some tokens. An example of the procedure is shown in

Figure 1.13;
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2. Supervised Tasks: the model is then trained on a series of supervised tasks, in par-

ticular: Sentence Acceptability Judgment [Warstadt et al., 2019], Sentiment Anal-

ysis [Socher et al., 2013], Sentence Similarity, or Paraphrasing [Dolan and Brock-

ett, 2005, Cer et al., 2017, Iyer et al., 2017], Natural Language Inference [Williams

et al., 2018, Rajpurkar et al., 2016, Dagan et al., 2006, Marie-Catherine de Marneffe,

2019], Sentence completion [Roemmele et al., 2011], Word Sense Disambiguation

[Pilehvar and Camacho-Collados, 2019] and Question Answering [Khashabi et al.,

2018, Zhang et al., 2018, Clark et al., 2019a].

Figure 1.13: Scheme of the self-supervised Masked Language Model objective. In this

example, in the sentence “Thank you for inviting me to your party last week.” the tokens

“for inviting” and “last” are randomly chosen to be masked. Each consecutive span

of masked text is replaced by a sentinel token (here <X> and <Y>) that is unique to

each input. Since “for” and “inviting” occur consecutively they are replaced by a single

sentinel token. In the output sequence we expect the model to predict the masked tokens

delimited by the sentinel tokens used to replace them plus a final sentinel token (here

<Z>). Taken from [Raffel et al., 2019].

The use of supervised task in pre-training is then been expanded in one of the latest

published version of T5, called Flan-T5 [Chung et al., 2022], where the objective was

creating a text-to-text model that was trained in a few-shot setting to solve 1.843 different

supervised tasks. This makes the model able to obtain more general capabilities so that it

could then be used in inference without any further fine-tuning (zero-shot setting) to solve

a variety of tasks successfully.
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1.4 Attention Attribution Methods and Explainability

One of the main problems with Neural Networks is the so called black box problem. This

problem refers to the fact that once the model starts to have hidden layers, and the inputs

passes through multiple activation function, we don’t know how the model is making its

prediction, and we can’t know in what way neurons are working together to respond to

certain patterns. While this is already troublesome in tabular or continuous settings, is

especially worse when dealing with text, since the model doesn’t work directly with the

words themselves, but with learned continuous representation that are usually built either

by other deep-learning models, or by the model itself. To try and solve this problem, one

of the most popular technique to understand what the model may be picking up from the

text is to look at the Attention matrices. By looking at them we can see which words

are attended the most, and we can also try and find syntactic patterns or other kind of

relationship between words. While the technique seem promising and can provide a lot of

insights on the inner workings of the model [Clark et al., 2019b, Hao et al., 2021], whether

or not we can treat Attention patterns as an explanation for how the model behave is still

debated in the scientific literature [Jain and Wallace, 2019, Wiegreffe and Pinter, 2019].

1.4.1 Value-Zeroing

Value-Zeroing is an explainability technique first introduced in [Mohebbi et al., 2023].

The method appears to draw inspiration from traditional techniques, where the influence

of a feature (in this case, a token representation) on the model’s output is extracted by

removing that feature from the input. Since deleting a word from a sentence, without

changing the semantics of it, is either challenging or impossible, the method opts to elim-

inate it during the Attention computation of the considered layer, by zeroing its Value

vector, i.e. setting each element in the vector to 0. As we saw in Section 1.3.1, for each

Attention head h, the input vector xi, for the ith token in the sequence is transformed in

three distinct vector through the use of different sets of weight: the Query vector qh
i , the

key vector kh
i and the Value vector vh

i . The context vector zh
i for the ith token of each
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Attention head is generated as a weighted sum over the Value vector:

zh
i =

n

∑
j=1

ααα
h
i jv

h
j (1.32)

where αααh
i j is the raw Attention weight assigned to the jth token and computed as a Softmax-

normalized dot product between the corresponding Query and Key vectors. In Value-

zeroing Equation 1.32 is changed by replacing the Value vector associated to j with a zero

vector vh
j ← 0,∀h ∈ H, where the context vector for the ith token is being computed. This

provide a new representation x¬ j
i that has excluded j. By comparing the original represen-

tation xi with this new one, usually by the means of a pairwise distance metric such as the

cosine distance, we obtain a measure of how much the output representation is affected by

the exclusion of j:

Ci j = cs(x¬ j
i ,xi) (1.33)

Computing Equation 1.33 for each tokens i, j generates a Value-Zeroing Matrix C where

the value of cell Ci j in the map indicates the degree to which the ith token is dependent

on the jth to form its contextualized vectorial representation. Visualizing the matrix C we

obtain an Attention map, where the importance of the Value vector is preserved.
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2. Dataset and Models Description

In this chapter the dataset that has been used for the experiments will be introduced. The

necessary cleaning and pre-processing steps will also be presented. Finally, the models

used for the experiments we’ll be discussed, along with how they have been used and

modified.

2.1 TAG-it Dataset

TAG-it [Cimino et al., 2020] is a dataset for a profiling task presented at EVALITA 2020

[Basile et al., 2020]. The dataset is based on the corpus defined in [Maslennikova et al.,

2019], and consists in 2.5 million posts written in Italian. These posts have been collected

from different Italian forums. The main resource is the ForumFree platform, but other re-

sources were used and aggregate to have more data (e.g. data from the 500x forum and the

audiclub were aggregated and inserted in the dataset by classifying those posts as AUTO-

MOTO).

Attribute Description Value

Age Age of the writer 0-19, 20-29, 30-39, 40-49, 50-100

Gender Gender of the writer M, F

Topic Topic of the post

ANIME, AUTO-MOTO,

BIKES, CELEBRITIES, ENTERTAINMENT, NATURE,

MEDICINE-AESTHETIC, METAL-DETECTING,

SMOKE, SPORTS, TECHNOLOGY

Table 2.1: TAG-it dataset target variables description.

The dataset is structured in collections of posts, where each training instance is a collection

of posts written by the same author. The task is to predict three variables associated with

the author and the posts. In fact, each collection is annotated with the Age and Gender
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of the author and the Topic of discussion. In Table 2.1 are reported the semantics of the

target variables.

2.1.1 Pre-processing

The division of the dataset in collections from the same author diminishes greatly the

number of training instance available. To be able to have enough data for the fine-tuning

of our models, we decided to shuffle all the posts in all the collections, and tag each

individual post with the corresponding collection target variables. This, however, created

a number of posts where the content, in the absence of the greater context provided by the

other collection posts, wasn’t representative of the target variables. This happened mostly

to posts that contained too little text. We empirically decided to use a cutoff of 10 tokens

and removed all the sentences from the new dataset that had less tokens than that. We kept

the original train/test split as it was (70% training, 30% test). At the end of this process,

we obtained a dataset consisting of 13.553 posts for the training set and 5055 posts for the

test set.

2.1.2 Dataset Analysis

To prepare for potential problems during the experiments the distribution of the dataset has

been studied (Figure 2.1) by plotting the number of available posts for each value of each

task for the training set. As it can be noticed from the figures, the Age variable presents

a quite balanced distribution among the five classes, especially for the three intervals be-

tween 30 and 100. For what concerns the Gender task, we can observe that the majority

of posts were written by male users, thus determining a strongly unbalanced distribution

of the two classes. The last variable, Topic, presents 11 labels, with 3 of them (ANIME,

SPORTS and AUTO-MOTO) having more than 2.500 posts each. The rest of the classes

are somewhat equally distributed, except for TECHNOLOGY that has less than 100 posts.

This is going to be an issue in the final part of our experiments, where the low number of

sentences available for the class made the application of our Label Representation Selec-

tion method less effective.
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Figure 2.1: Distributions for the target variables of the dataset after the pre-processing

steps.

2.2 Models: BERT and T5

As the main objective of our experiments being the use of the text-to-text framework for

classification, we mainly used T5 during the experiments. In particular we used IT5 [Sarti

and Nissim, 2022], an Italian version of T5 pre-trained on the cleaned Italian section of the

mC4 Corpus [Xue et al., 2021]. In the first part of our experiments we’ve also compared

its performances against the ones of an Italian BERT, available through the Transformers

Python library1, that was pre-trained on the Italian sections of the OPUS Corpora [Tiede-

mann, 2016]. In order to compare different architectures (e.g. T5 and BERT), it would

1Model available at: https://huggingface.co/dbmdz/bert-base-italian-cased
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be ideal to analyze models with meaningful similarities, e.g. having a similar number of

parameters or amount of computation to process an input-output sequence. Since T5 is

an Encoder-Decoder model while BERT only has an Encoder stack, a T5 with n layers

has approximately the same number of parameters as a BERT with 2n layers, but also the

same amount of computational cost of an n-layers BERT. To try and achieve the fairest

comparison of the two Transformers, we decided to use the base version of IT5 (220M

parameters) against the base version of the Italian Bert (110M parameters), since the main

reason to use smaller Transformer model isn’t the number of parameter by itself, but the

computational cost associated with the use of bigger models. All the code has been writ-

ten in Python 3, and all the Transformers-related experiments have been done using the

Transformers Library in its PyTorch version.

2.2.1 Multi-task BERT

In the first set of experiments, we compared the performances of BERT and IT5 in a multi-

task setting, where they’re trained to resolve all three tasks available in the dataset. While

this is simple enough in a text-to-text setting (see Section 3.1.1), for BERT we had to

modify the architecture to allow the model to make three prediction simultaneously.

We created a new class for the model, called BertMultiTaskForSequenceClassi-

fication that inherit from the class BertPreTrainedModel available through the Trans-

formers Library. Then we changed the single Output Classifier, which is the final layer of

BERT, by substituting it with three different Linear Layers on top of the Encoder stack:

1 class BertMultiTaskForSequenceClassification(BertPreTrainedModel):

2 def __init__(self , config):

3 super ().__init__(config)

4 self.num_labels=config.num_labels

5 self.config=config

6 self.bert=BertModel(config)

7 classifier_dropout =(

8 config.classifier_dropout if config.classifier_dropout

is not None else config.hidden_dropout_prob

9 )
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10 self.dropout = nn.Dropout(classifier_dropout)

11

12 # The three new classifiers

13 self.gender_classifier=nn.Linear(config.hidden_size , 2)

14 self.topic_classifier=nn.Linear(config.hidden_size , 11)

15 self.age_classifier=nn.Linear(config.hidden_size , 5)

16 self.post_init ()

Then, the forward method of the model needed to change accordingly. The forward

method is the one called to pass inputs trough the architecture, both during training and

inference. We needed to pass the Encoder output to the three new classifier, and once we

obtained the logits, we had to change the calculation of the loss to account for the three

different logits, each associated with one of the heads:

1 def forward(self , input_ids: Optional[torch.Tensor] = None ,

attention_mask: Optional[torch.Tensor] = None , token_type_ids

: Optional[torch.Tensor] = None , position_ids: Optional[torch.

Tensor] = None , head_mask: Optional[torch.Tensor] = None ,

inputs_embeds: Optional[torch.Tensor] = None , gender_labels:

Optional[torch.Tensor] = None , topic_labels: Optional[torch.

Tensor] = None , age_labels: Optional[torch.Tensor] = None ,

output_attentions: Optional[bool] = None , output_hidden_states:

Optional[bool] = None , return_dict: Optional[bool] = None):

2

3 # Obtaining the output of the Encoder

4 outputs=self.bert(

5 input_ids ,

6 attention_mask=attention_mask ,

7 token_type_ids=token_type_ids ,

8 position_ids=position_ids ,

9 head_mask=head_mask ,

10 inputs_embeds=inputs_embeds ,

11 output_attentions=output_attentions ,

12 output_hidden_states=output_hidden_states ,

13 return_dict=return_dict ,
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14 )

15 pooled_output=outputs [1]

16 pooled_output=self.dropout(pooled_output)

17

18 # Obtaining the logits from the three classifiers

19 gender_logits=self.gender_classifier(pooled_output)

20 topic_logits=self.topic_classifier(pooled_output)

21 age_logits=self.age_classifier(pooled_output)

22

23 # New Loss Calculation

24 loss =0.0

25 loss_fct=CrossEntropyLoss ()

26 loss+= loss_fct(gender_logits , gender_labels)

27 loss+= loss_fct(topic_logits , topic_labels)

28 loss+= loss_fct(age_logits , age_labels)

29

30 return MultiTaskSequenceClassifierOutput(

31 loss=loss ,

32 gender_logits=gender_logits ,

33 topic_logits=topic_logits ,

34 age_logits=age_logits ,

35 hidden_states=outputs.hidden_states ,

36 attentions=outputs.attentions ,

37 )

As we can see from the code, the new loss is simply calculated as the sum of the CrossEn-

tropyLoss obtained from the outputs of each head. This is then back propagated through

the network during training.

2.2.2 T5 Enconder for Value-Zeroing

In Section 3.3 a Label Representation Selection method will be presented that, to function,

needs to use an explainability technique called Value-Zeroing (See Section 1.4.1). To be

able to do, we need to have a T5 model that can zero specific indexes of the Value vector
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during the calculation of the Self-Attention layer output in the Encoder. To do so, in the

forward method of the T5AttentionLayer of the Python Transformers library we added

a zero value index between the parameters:

1 def forward(self , hidden_states , mask=None , key_value_states=None ,

position_bias=None , past_key_value=None , layer_head_mask=None ,

query_length=None , use_cache=False , output_attentions=False ,

zero_value_index=None):

Then, before weighting the Value vector with the calculated Attention scores, we zero the

provided index:

1 if zero_value_index is not None:

2 value_states [:, :, zero_value_index] = torch.zeros(value_states

[:, :,zero_value_index ].size(),device=scores.device)

And then we use that value state tensor to calculate the Attention output:

1 attn_output = unshape(torch.matmul(attn_weights , value_states))

2 attn_output = self.o(attn_output)

Then we used the modified model to extract the Value-Zeroing score Matrix for each

sentence in the dataset:

1 # The Score Matrix is initialized

2 score_matrix = np.zeros(( config.num_hidden_layers , seq_length ,

seq_length))

3

4 for layer_index , layer_module in enumerate(model.encoder.block):

5 if layer_index in layers:

6 for t in range(seq_length):

7 extended_blanking_attention_mask: torch.Tensor =

8 model.get_extended_attention_mask(

9 inputs[’attention_mask ’], input_shape

10 )

46



11 with torch.no_grad ():

12 layer_outputs = layer_module(

13 org_hidden_states[layer_index ]. unsqueeze (0),

14 attention_mask=extended_blanking_attention_mask ,

15 output_attentions=False , zero_value_index=t

16 )

17

18

19 # compute similarity between original and new outputs

20 x = layer_outputs [0]. squeeze ()

21 y = org_hidden_states[layer_index + 1]

22

23 distances = cosine_distances(x, y).diagonal ()

24 score_matrix[layer_index , :, t] = distances

As we can see, the algorithm is pretty simple: for each sentence we iterate through each

layer and for each token t we calculate the Value-Zeroing score of every other token, to

assess how the token t contributes to the representation of the other part of the sentence.

We obtain a Score Tensor with dimensions [number of layer, max sentence length, max

sentence length].

Finally, we apply to the Score Tensor a technique called Attention Rollout [Abnar and

Zuidema, 2020], where we aggregate the Tensor across the number of layer dimension by

doing a point wise multiplication of the slices. We then use as scores for the tokens the

value taken from the aggregated matrix.
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3. Text-to-Text models for classification tasks

In this chapter the main experiments of the thesis are going to be discerned. In particular,

the first section will focus on how evaluating the performance of text-to-text model for

classification tasks, and how do they perform against models specifically built for classi-

fication. Then, it will also touch on the problem of how important are label representation

for text-to-text models in classification scenarios.

In the second section, the focus will be on a particular classification task where label rep-

resentations are highly important. A thorough testing of different label representations

and their effect on the performance of the model will be presented. There will also be

qualitative analysis of the relationship between certain characteristics of the chosen repre-

sentations and the score the models trained on them achieved.

Finally, in the third section, a novel Label Representation Selection technique, based on

Attention attribution methods, will be presented and evaluated, both from a performance

point of view and from a qualitative perspective by a thorough analysis on the representa-

tions obtained with this method.

3.1 Evaluation of Text-to-Text model for Classification

The purpose of these first experiments was to evaluate how well we could use text-to-text

models for classification tasks. In particular, being the task in the Italian language, we

decided to evaluate the first text-to-text Transformer model developed for the Italian lan-

guage, IT5 [Sarti and Nissim, 2022], against a series of baselines. The experiments were

performed in two different classification scenarios: single-task and multi-task, and we

compared the performances of IT5 against those obtained with an Italian version of BERT,

a model specifically built for classification. Finally, following the findings in [Chen et al.,

2020], we performed a more in-depth analysis to test the impact of label representations

in the chosen tasks.
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3.1.1 Experimental Settings

The experiments were performed on two different classification scenarios: i) single-task

and ii) multi-task classification. For what concerns the single-task scenario, we fine-tuned

both BERT and IT5 three times in order to create three different single-task sequence

classification models, one for each task. To perform fine-tuning with the BERT model, we

converted the three target variables into numeric label, associating a unique index to each

value of the target variable. For T5, the target variables were verbalized empirically, by

manually choosing a label representation for each possible value:

• Gender: values have been transformed in uomo and donna;

• Topic: values have been translated in Italian, written in lowercase and truncated

into a single word (e.g. MEDICINE-AESTHETIC into medicina), thus resulting

in the following list: anime, automobilismo, bici, sport, natura, metalli, medicina,

celebrità, fumo, intrattenimento, tecnologia;

• Age: we didn’t change the representation and we kept the original classes as their

own representations.

Moreover, following the Fixed-prompt LM tuning approach (see [Liu et al., 2021] for an

overview), we added a prefix to each input when fine-tuning the IT5 model. This approach

implies providing a textual template that is then applied to every training and test example.

Fixed-prompt LM tuning has been already successfully explored for text classification,

allowing more efficient learning [Schick and Schütze, 2020, Schick and Schütze, 2021,

Gao et al., 2021]. In our experiments, we tested three different prefixes, one for each

classification task: “Classifica argomento”, “Classifica età” and “Classifica genere”.

Concerning instead the multi-task classification, each sentence has been presented three

times during the training phase of the two models, each one with the appropriate label

and, in the case of IT5, with the appropriate prefix. This further shows the importance of

having a task-related prompt, since the multi-task model can learn which of the three task

to do based on the presented prefix.
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We relied on two different typology of models as baseline. The first one is based on

two dummy classifiers: i) most frequent classifier, Dummy (MF), which always pre-

dicts the most frequent label for each input sequence, and ii) stratified dummy classifier,

Dummy(S), that generates predictions by respecting the class distribution of the training

data. Moreover, in order to assess the impact of the pre-training phase of the two Trans-

former models, we also used an Italian BERT and an IT5 model with randomly initialized

weights that we called BERT Random and IT5 Random. We used F-Score (macro and

weighted) as evaluation metric for all the experiments, and all the models have been pa-

rameterized the same and trained for the same amount of training steps.

3.1.2 Results

Model Topic Age Gender

Macro Weighted Macro Weighted Macro Weighted

Dummy (S) 0.09 0.17 0.20 0.22 0.50 0.68

Dummy (MF) 0.04 0.10 0.09 0.14 0.44 0.69

BERT Random 0.14 0.34 0.26 0.27 0.56 0.74

IT5 Random 0.14 0.34 0.20 0.26 0.36 0.74

BERT 0.50 0.64 0.32 0.33 0.76 0.84

IT5 0.19 0.41 0.16 0.22 0.31 0.70

Multi-task

MT BERT 0.56 0.67 0.32 0.33 0.75 0.84

MT IT5 0.31 0.52 0.16 0.23 0.33 0.71

Best-Performing Model Evalita 2020

MT UmBERTo — 0.64 — 0.39 — 0.86

Table 3.1: Macro and Weighted average F-Score for all the models and according to the

tree classification variables. In the last line part of the table, it has also been reported the

best performing model from the original EVALITA shared task, for which the dataset was

created. Their Macro F-Scores weren’t available. In bold the best performing model for

each metric and task.
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Classification results are reported in Table 3.1. We’ve also reported the best performing

model at the EVALITA 2020 TAG-it shared task, for which the dataset we used was cre-

ated. It’s important to note that we’ve used the data in a different way with respect to

how was supposed to be used from the task (see Section 2.1.1), with the main difference

being that for the original task less training instances were available, but each had longer

context. The best performing model at the shared task was an UmBERTo model [Parisi

et al., 2020], which is a BERT-like model with a different pre-training objective, trained

in a multi-task setting (similar to what we did for our multi-task Bert, Section 2.2.1).

The winning system was described in [Occhipinti et al., 2020] and we reported here their

weighted F-Scores for all three tasks (MT UmBERTo). It’s interesting to observe that both

our single-task BERTs reached the same results as them in the Topic classification task,

while our multi-task BERT surpassed it. For Age and Gender, however, their performances

were slightly better.

For our systems we can observe, instead, that Transformer models outperformed the

dummy baselines in almost all the classification tasks. The only exception concerns the

performance of IT5 on the Age prediction task, for which the stratified dummy classifier

obtained the same scores. It should be considered that the Age classification task appears

to be the most complex task, regardless of the model taken into account. In fact, the

best performing model (BERT) obtained only 0.11 points more than the baseline. The

complexity in predicting the age ranges could be due to the fact that the task requires more

sophisticated information than those that the model can extract from linguistic clues and

writing styles. These don’t seem to be enough for these models to infer the age range of

the writer.

On the other hand, on the other two tasks, Gender and Topic, the classifier achieved

better results. This is in line with [Cimino et al., 2020], where the authors suggested that

textual clues seem to be more indicative of these dimensions rather than Age. Moreover,

the higher scores obtained for the Gender classification task could also be indicative of the

fact that, differently from the other two, gender prediction was cast as a binary task and

thus is easier to predict.

When we look at the performances obtained by the randomly initialized BERT and
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IT5, we note that the latter achieved results close to those of the pre-trained models. In-

deed, in some cases, like IT5 on the Age and Gender prediction tasks, the Random model

gets better results. This seems to suggest that the pre-training phase of IT5 did not allow

the model to encode enough useful information in order to improve its performance on the

selected tasks. On the other hand, the pre-training phase had a strong impact on BERT per-

formances, since the pre-trained model outperformed the Random one in all classification

tasks.

If we focus, instead, on the differences between the two models, we can clearly no-

tice that BERT performed best in all configurations. In particular, IT5 achieved fairly

reasonable results in comparison with BERT for simpler tasks, such as Gender and Topic

classification. For what concerns the Age prediction task instead, we observed a perfor-

mance drop, with a difference in terms of weighted F-Score of 0.17 points. A possible

explanation for this behavior could be due to the fact that, differently from BERT, T5 has

to produce the label by generating open text, thus making the prediction more complex

from a computational point of view. In this regard, it is important to notice that for our

experiments we relied on the base version of IT5, which, despite being bigger in terms of

parameters than BERT base, is still quite smaller than the best-performing model (T5-11B)

presented in [Raffel et al., 2019]. Another possible explanation is that the representations

for the Age class were semantically too similar to one another, and also complex from a

number of sub-tokens point-of-view.

It should be pointed out that in some cases IT5 generated labels that did not belong

to those we defined, but which actually turned out to be more accurate than the original

ones. This is the case, for instance, of a few posts labelled with fumo (English: smoke)

that were predicted by IT5 with the label tabacco (English: tobacco). We also found that

sometimes IT5 was not able to generate meaningful labels, but rather produced only punc-

tuation marks or single letters. Nevertheless, we only identified a few isolated cases of

them (less than 5 for what concerns Topic classification), which had no real impact on the

overall performances of the model.

It is also interesting to point out that the IT5 Random model did not generate unexpected

labels like the pre-trained one did. This could be another motivation for its better perfor-
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mances in the two cases of Age and Gender classification.

Observing the results obtained in the multi-task setting (MT BERT and MT IT5), we

notice a significant increase in the performances of IT5. In fact, while BERT achieved

a consistent boost only in the Topic prediction scenario, IT5 performances improved sig-

nificantly in all classification tasks, with an average improvement of around 0.06 points

more (in terms of weighted F-Score) than during single-task classification. This is partic-

ularly evident with regard to Topic and Age classification, while the scores obtained for

the Gender prediction task remained roughly the same. This result could suggest that, be-

sides having more data for the fine-tuning phase, the IT5 model particularly benefits from

learning multiple tasks at a time, thus improving its generalization abilities.

3.1.3 Label Representation Analysis

As described in the original T5 paper, one of the issues of using text-to-text models for

classification tasks is that the model could output text that does not correspond to any of

the possible pre-defined label representations for a certain task. While this happened in our

experiments, in some cases it seems that IT5 was able to generate more appropriate labels

than the one that were originally assigned to the post during the construction of the dataset,

thus suggesting some kind of generalization ability of the model. For instance, as we can

observe from the examples in Table 3.2, the labels predicted for the three input posts are

not among those expected for the Topic prediction task (See Section 3.1.1). Nevertheless,

by looking at the posts, the labels predicted by IT5 might be considered more appropriate

choices as Topics tag for each text.

Inspired by such behavior, we decided to further investigate the generalization abilities of

the IT5 model by measuring the impact of different label representations on model per-

formance. More specifically, we wanted to understand if changing the representation to

the model could affect its capabilities of correctly predicting the right classes. To test this,

we produced a shuffled version of each dataset by randomly shuffling all the labels of a

certain category with another. For Topic we randomly shuffled the categories representa-

tion (e.g. we used medicina to represent the AUTO-MOTO class), for the binary Gender

prediction task we used maschio to represent the F class and femmina to represent the M
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Sentence Predicted Label Correct Label

“Che bell’acqua e che bei vitellini!

Grande Pres.!”

animali celebrità

“Perchè non l’alcool alimentare essendo

neutro? E costa pure meno”

alcool fumo

“terza miscela svizzera champagne ec-

cellente! non vedo l’ora di tornare da

two lions per altre miscele”

bevande fumo

Table 3.2: Examples of IT5 predictions.

class. For the Age classification task, with the target variable being ordinal, we shuffled

them by trying to maximize the distance between the original class and the new one, i.e.

we used 30-49 for 0-19, 40-49 for 20-29, 50-100 for 30-39, 0-19 for 40-49 and 20-29 for

50-100. The results of this experiment is reported in Table 3.3.

Model Topic Age Gender

Macro Weighted Macro Weighted Macro Weighted

IT5 0.19 0.41 0.16 0.22 0.31 0.70

IT5 shuffled 0.07 0.17 0.11 0.17 0.29 0.69

Table 3.3: Macro and Weighted F-Scores for the classification tasks obtained with IT5

using correct and shuffled labels (IT5 shuffled). In bold the best performing model for

each metric and task.

As we can see, the most significant variations in model performance concern the Topic and

Age classification tasks. In particular, we can observe a drastic performance drop for the

Topic task, with a difference between the predictions on the original and shuffled datasets

of more than 0.24 points in terms of weighted F-Score. Moreover, it is interesting to note

that the scores obtained with the shuffled labels are also lower than those obtained by the

randomly initialized IT5 (0.17 vs. 0.34). This result seems to suggest that the IT5 model is

indeed able to learn some specific lexical correlations between the encodings of the input

tokens and the encodings of the labels during the fine-tuning phase, and that these correla-
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tions are no longer observable after the shuffling process. This is also corroborated by the

fact that, when presented with shuffled data, the model stopped generating new and more

specific labels for the input sequences as it was doing in the previous experiments. From

the results we can also understand that these lexical connections between the sentence and

the chosen label are essential to maximize the model performances, and for certain tasks,

like Topic, the absence of these connections make the model unable to reach satisfactory

performances altogether. These findings are what motivated the next set of experiments

that will be presented in Section 3.2.

If we look, instead, at the results obtained with the Gender dataset, we can notice that

shuffling the labels does not have a significant effect on the performance of the model.

This is a clear evidence that, unlike Topic, the Gender prediction task does not present a

direct lexical connection between the input sequence and the label. As a result, the model

tends to memorize the information available in the fine-tuning data rather than derive gen-

eralities exploiting the knowledge learned during the pre-training phase, and as such, any

label works for the model. To further prove this, we conducted another experiments on the

Gender classification task by trying a different set of label representations: we changed

from uomo and donna to m and f. As shown in Table 3.4, modifying the label represen-

tation did not affect the performance of IT5, which obtained basically the same results in

both configurations. This seems to confirm once again that for tasks that do not show an

explicit relationship between input samples and labels, the choice of the label largely does

not affect model performances.

Labels Macro Weighted

m/f 0.32 0.70

uomo/donna 0.31 0.70

Table 3.4: Macro and Weighted F-Score on the Gender prediction task using m/f and

uomo/donna as target variables. In bold the best performing model for each metric.

This is in line with the findings of [Chen et al., 2020], where they found that the im-

portance of the label representations is task-dependent. In fact, we similarly find that

changing the representation to the Topic classification task has a direct impact on its per-
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formances, while for the Gender classification task the string used to represent the gender

doesn’t have a meaningful impact on the capabilities of the model.

3.2 Impact of Label Representation on Model

Perfomances

With the previous set of experiments we established that comparably sized text-to-text

models can achieve performances on par with classification model like BERT, especially

in a multi-task setting, where more context is provided. We’ve also assessed that how we

represent the label is especially important for some tasks where the model seems to be able

to draw clues from lexical connection between the input and the text it should generate.

In our experiments, we saw that the Topic classification task seemed to be deeply affected

by this, since when the representations were shuffled the model wasn’t able to learn how

to solve the task.

In this section, we tried to see how much different label representations impacted the model

prediction capabilities, and while doing so, we tried to find a way to determine beforehand

which representation could work best. The idea was to try and find some kind of metric or

heuristic that could be used as a Label Representation Selection method. To achieve this

we fine-tuned a IT5 again, just on the Topic classification task, using a number of different

label representations. Then, we evaluated the results gaging the impact of different label

representation and with those results we then tried to find some correlations between the

model performances and some metrics.

3.2.1 Experimental Settings

As introduced in Section 3.2, to investigate the influence of label selection on the model

performance, we fine-tuned the IT5 model using different combinations of strings to repre-

sent the original classification categories. We will refer to the set of the original categories,
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Figure 3.1: The framework for the creation of the different sets of labels S j ranked by

cosine similarity.

translated in Italian, with C1. For each category ci in C we created a set Ri, composed by

100 string representations: 10 were selected from synonyms and related words to the orig-

inal categories (including aforementioned translated ones), while the remaining 90 were

randomly chosen from the most frequent nouns in the ItWac corpus [Baroni et al., 2009].

Let Ri = {ri0,ri1, ...,ri99} be the set of labels for the category ci, and ri j be the jth label

in the set. Then, for each category ci, we ranked its corresponding set of labels Ri in

descending order of similarity:

cs(ci,ri0)≥ cs(ci,ri1)≥ ...≥ cs(ci,ri99) (3.1)

where cs(ci,ri j) is the cosine similarity between the average embedding2 of the sub-tokens

of ci and ri j, extracted from the last Encoding layer of the IT5 model.

Given the previously defined sets Ri, which contains the elements ranked by similarity,

we created 100 sets of labels S j (where j ranges from 0 to 99). Each set is defined as

1List of translated labels: anime, automobilismo, bicicletta, sport, natura, metal detector, medicina,

celebrità, fumo, intrattenimento and tecnologia.
2For embedding we used the activation of the last layer of the Encoder stack of IT5 after seeing in

inference the tokens of the chosen representation.
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S j = {r0 j,r1 j, ...,r10 j}, where e.g. r0 j is the jth ranked label for category c0. As a con-

sequence, S0 contains the labels that achieved the highest cosine similarity with the orig-

inal categories, while S99 is the set containing the lowest cosine similarities. A graphical

overview of the experimental setting is shown in Figure 3.1.

We then fine-tuned IT5 for each ranked set of representations S j. Each model was

trained for 10 epochs using F-Score as the evaluation metric, resulting in 100 models,

where the model with rank 0 is the model trained with the original set of labels C, the

model with rank 1 is the model trained with S1 (the set of representations with the highest

cosine similarity to C) and the model of rank 99 is the model trained with S99 (the set of

representations with the lowest cosine similarity to C).

3.2.2 Results

Figure 3.2: Scatter-plot between the rank of the different sets of labels S j against the IT5

weighted F-scores obtained by the model trained on that set.

In Figure 3.2 we have a summary of the results obtained by the T5 models fine-tuned on

the Topic classification tasks according to the 100 different sets of labels (S j). At first
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glance, we can readily observe that the choice of words used to represent the classification

categories has a considerable impact on the model’s average performance. Indeed, we

can see that the classification scores vary significantly, ranging from a minimum of 0.54

(rank 75) to a maximum of 0.65 (rank 86). Additionally, it is worth noting that the model

trained with S0, which contains the original translated labels, achieved an F-score of 0.63.

This result indicates that simply using the original translated labels directly still provides a

competitive performance. However, the significant fluctuations in the classification scores

among the different sets S j suggest that certain labels may still offer better performances

than the original ones, while others may introduce noise or ambiguity, resulting in sub-

optimal outcomes.

Interestingly, these findings appear to diverge from previous studies, e.g. [Chen et al.,

2020], where the role of label representation was underestimated. While being a task-

dependent issue, the role of label representation seems to have a large impact on model

performance, especially for lower frequency labels, going as far as making certain labels

range from being completely unpredictable to reaching satisfactory performances. We will

discuss more on this in the next paragraphs.

That being said, despite the differences in terms of weighted F-scores, there does not

seem to be a clear correlation between the model’s performance and the degree of semantic

distance between the chosen labels and the original ones (represented by the rank j of

the Representation Set). In fact, as the cosine similarity decreases between the selected

representations and the original ones (from rank 0 to rank 99), there is no apparent trend

in F-score values.

Per-label results

In order to gain a more precise insight into the impact of the tested labels, Figure 3.3

illustrates the variation of F-scores obtained with the 100 different sets of labels (Si) for

each individual category. Firstly, we can observe that the average results can vary signifi-

cantly depending on the category under consideration. For instance, IT5 shows promising

average performances in classifying posts related to ANIME, SPORT or AUTO-MOTO,

while encountering difficulties in identifying posts annotated with the topics BIKES and
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Figure 3.3: Boxplot showing the variation of the F-scores using different labels according

to each classification category.

TECHNOLOGY. This is possibly due to the fact that the posts belonging to the former

categories are the most frequent in the entire dataset. Particularly noteworthy is the fact

that, across almost all tested ranks, the model failed to correctly identify any posts related

to TECHNOLOGY. This issue is likely attributed to the limited representation of this cat-

egory within the dataset, further compounded by the original dataset configuration having

more examples in the test set than in the training set (51 and 85 samples in the training

and test sets respectively).

Analyzing the variation of results based on the labels used for representing the cate-

gories, we observe that the choice of the label often has a significant impact on the model’s

performances. While some labels exhibit relatively stable results with minor variations

across different representations, such as ANIME, BIKES, SPORT and AUTO-MOTO,

there are other instances where the selected labels lead to remarkable fluctuations in the

model’s performances. Notably, this behaviour emerges especially in the identification of

posts related to NATURE, METAL-DETECTING, MEDICINE-AESTHETICS and EN-

TERTAINMENT. For these categories, IT5’s classification performances can change dras-

tically depending on the specific label. In some cases, the model manages to achieve quite

good results, accurately classifying posts with a high F-Score. However, in other instances

it struggles significantly, making erroneous classifications for the majority of cases. For
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Figure 3.4: Top and bottom 10 labels that maximize/minimize the results for the most

varying categories (Nature, Metal-Detecting, Medicine-Aesthetics and Entertainment).

instance, in the case of MEDICINE-AESTHETICS, the F-Score reaches a maximum of

0.71 when the label is represented by the term acuto but it fails to correctly classify any

instance (F-Score = 0) when the label is represented as proprio. This highlights the im-

portance of exploring optimized selection strategies to maximize the model performance.

To obtain a more comprehensive qualitative perspective of these findings, we include,

in Figure 3.4, the top and bottom 10 representations that maximized/minimized the F-

Score values for the four aforementioned categories. As we can observe, among the four

considered categories, only one (MEDICINE-AESTHETICS) contains the original label,

i.e. the one with cosine similarity equal to 1 (medicina), in the top 10 representations.

For the other categories, the absence of the original label seems to suggest that the cho-

sen word for the label, which should be the closest one to the reference topic, may not

be the one that can maximize the results. When analyzing individual words, it becomes

evident that not all words contributing to the model’s best performance belong exclusively

to the domain of the considered category. Surprisingly, words such as cinema and sit-

com, seemingly related to the ENTERTAINMENT domain, are among those that most

negatively impact the model’s F-Scores. Nevertheless, MEDICINE-AESTHETICS shows

an exception, with several words aligned with the category’s domain, e.g. benessere,

medicina, dottoressa e sensibilità. Lastly, it is worth noticing that the performance drop
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is mostly label-dependent, and there is a significant difference between the most- and

least-performing representations for the four categories. In fact, while NATURE and

METAL-DETECTING exhibit a relatively modest decrease (around 0.20 F-Score points),

MEDICINE-AESTHETICS and ENTERTAINMENT display a far more pronounced dif-

ference in performances.

3.2.3 Relationship between Representations and Performances

Categories Spearman p-value

Entertainment 0.29 0.003 *

Auto-Moto 0.05 0.62

Medicine-Aesthetics -0.02 0.85

Bikes -0.05 0.61

Anime -0.10 0.37

Technology -0.12 0.21

Smoke -0.20 0.04 *

Sports -0.22 0.03 *

Nature -0.25 0.01 *

Metal-Detecting -0.35 0.00 *

Celebrities -0.45 0.00 *

Table 3.5: Spearman correlations between F-Scores and label similarities (cosine similar-

ity) for each category. Statistically significant correlations are marked with *.

Having analyzed the model’s performances and assessed the impact of words used to rep-

resent the categories on the classification results, we decided to explore the existence of

any relationship between the model’s performances and the employed words.

Semantic Similarity

Initially, we aimed to ascertain whether there is a correlation between the words that are

more/less semantically similar to the original categories and the performance of IT5. To
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achieve this, we computed the Spearman correlation between the T5 model’s performance

and the cosine similarity values calculated to construct the 100 sets for each label S j.

Figure 3.5: Scatter-plot showing the relationship between F-Scores and cosine similarity

values for the 6 categories that exhibited a statistically significant correlation.

The results of these correlations are presented in Table 3.5 and their scatter-plot can

be seen in Figure 3.5. As observed, 6 out of the 11 classification categories exhibit sta-
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tistically significant correlations. Among these, only one correlation is positive (Enter-

tainment), while the others show negative correlation values. This outcome is quite unex-

pected as it seemingly implies that the improvement in the model’s performance is linked

to a decrease in semantic similarity. However, it is crucial to emphasize that the corre-

lation values are not particularly high, and thus we cannot draw any conclusion about

these results. Moreover, it is important to consider that, while cosine similarity can serve

as a useful measure of similarity between embeddings, it may not encompass the entire

semantic space.

Internal Similarity

Since the similarity between selected labels representations within each set could poten-

tially impact the model’s performances, we conducted an additional test to investigate

whether higher semantic similarity among representations within a set could negatively

affect the performance of IT5. To achieve this, we computed the inner similarity of each

set, defined as the average cosine similarity of all possible distinct label combinations3.

Subsequently, we computed the Spearman correlation between each set’s inner similarity

and the F-Scores obtained by the model fine-tuned with it. Although the values of inner

similarities vary considerably across the sets (ranging from a similarity of 0.69 for rank 0

to 0.38 for rank 100), we did not find a statistically significant correlation with the model’s

performances (Spearman = 0.01, p-value = 0.90). These results suggest that, despite the

sets exhibited considerable variation in terms of inner similarity, the similarity between

the representations didn’t plainly affect the model’s performances.

Representations Frequencies

Finally, since the aforementioned results have demonstrated that different labels have an

impact on the model’s performances, we decided to investigate whether this impact could

be somehow related to the frequency of these representations within the model’s training

dataset. To this end, we computed the absolute frequency of each label used in our experi-

3As defined in Section 3.2.1, a label is represented as the average embedding of each subtoken in the

string.
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ments (11 labels per 100 sets, totalling 1.100 words) within the Italian version of the mC4

Corpus, i.e. the corpus on which IT5 was trained.

Categories Spearman p-value

Medicine-Aesthetics 0.13 0.20

Nature 0.06 0.54

Sports 0.04 0.66

Bikes 0.01 0.94

Technology -0.02 0.88

Anime -0.02 0.84

Entertainment -0.03 0.75

Auto-Moto -0.05 0.62

Metal-Detecting -0.06 0.57

Celebrities -0.06 0.54

Smoke -0.25 0.01 *

Table 3.6: Spearman correlations between f-scores and labels absolute frequencies (com-

puted in the Italian mC4 Corpus) for each category. Statistically significant correlations

are marked with *.

Subsequently, we calculated the correlation between the scores obtained by IT5 for

each label of each set Ri and the corresponding frequencies of each label found in the

mC4 corpus. Among the eleven categories present in the dataset, only one showed a

statistically significant correlation, Smoke, with a Spearman correlation value of -0.25.

This result suggests that, at least for this particular category, a decrease in the label’s

frequency in the training corpus corresponds to an increase in the model’s performance.

However, the fact that only one category exhibits a significant correlation, and that this

correlation is not particularly high, once again prevents us from drawing any conclusive

findings.
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3.3 Attention-based Label Representation Selection

method

Having assessed with the previous experiments that varying the representation can heav-

ily impact the performances of the model on the Topic classification task, we decided to

test a new possible Label Representation Selection method. As we did for the previous

experiment, we tested the new method by selecting a number of different possible repre-

sentations for the categories of the Topic classification task, and then trained IT5 on those

representation. This was done to see if the representation score, given by this new method,

could correlate with the performances obtained by the model using those representations.

In particular, we tried three different Attention-based methods to select possible label

representations from the available training set. The idea was that we could look at which

tokens were the most salient in the construction of specially placed tokens in the sentence,

and then use the most salient tokens as representations. Doing this, we could find suitable

representations for our labels directly from the words used in the training set, and the

words we end up choosing would also be words that, in that context, seem to be preferred

by the model to construct representation of other important tokens. The hope is that the

chosen representation should help the model to create the lexical connection between input

and output in a easier manner, thus resulting in a easier learning environment and higher

F-Scores.

We chose as the specially placed tokens in the sentence, the translated class names, or

a variation of those (see Section 3.3.1), and we appended that at the end of the sequence,

to study which tokens are the most salient to construct their continuous representation. To

do this, instead of looking directly at Attention weights, we used a technique presented in

Section 1.4.1 called Value-Zeroing.

We chose to use Value-Zeroing because, as it’s already attested in the scientific litera-

ture, using the Attention weight to directly gauge the saliency of a certain token is based

on the assumption that the larger is an Attention weight of a vector, the larger will be its

contribution. While this assumption is not wrong, it also completely disregards the impact
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of the transformed input vector (the Value vector, in particular). A big Value vector with a

small Attention weight could contribute more to a representation than a very small vector

with a high Attention weight [Kobayashi et al., 2020]. Value-Zeroing takes into consid-

eration both the Attention weights and the Value vector of each tokens, and as such we

believed to be better suited to indicate which part of the sentence are more salient to build

the representation of our specially placed tokens.

After finding which tokens is the most salient according to Value-Zeroing, we use it as a

representation for the particular class associated to the sentence it was extracted from.

3.3.1 Experimental Settings

We define S ∈ D as one of the training sentences for our model, in the dataset D. The

sentences are tokenized using the provided IT5 trained tokenizer T . For each sentence S,

we injected a series of tokens p tokenized with T . The objective is to study which tokens

from the original sentence S are more salient for the model to build the representation

of the tokens in p. The difference between the three methods we’ve tested is how p is

defined:

• In the Appended Label method, we define p as the translation of the original class

names4, e.g. the sentence “Che giornata indimenticabile... è passato proprio tanto

tempo!</s>” from category SPORTS, becomes: “Che giornata indimenticabile...

è passato proprio tanto tempo! Sport</s>”;

• In the Appended Label with Prompt method, we provide the model additional

context, by defining p as: La frase precedente appartiene alla categoria (English

translation: The previous sentence belongs to the category of ) followed by the orig-

inal class name translated, e.g. the sentence “Che giornata indimenticabile... è pas-

sato proprio tanto tempo!</s>” from category SPORTS, becomes: “Che giornata

indimenticabile... è passato proprio tanto tempo! La frase precedente appartiene

alla categoria Sport</s>”

4List of translated labels: anime, automobilismo, bicicletta, sport, natura, metal detector, medicina,

celebrità, fumo, intrattenimento and tecnologia.
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• In the End Of Sentence (EOS) method, we don’t append any new tokens to the sen-

tence, and we define p as the special EOS (</s>) token, e.g. for the sentence “Che

giornata indimenticabile... è passato proprio tanto tempo!</s>” no new token is

appended;

After injecting p in each S∈D we pass each sentence in inference through a modified IT5,

whose Encoder is able to calculate the Value-Zeroing matrix (see Section 2.2.2). Then, we

focus on which token s ∈ S has the highest Value-Zeroing score, with respect to the tokens

in p.

s = max(value zeroing score(S, p))

By doing so we obtain, for each sentence, the most important token whose embedding

vector is used to construct the representation of p5. After doing it for the whole dataset,

we obtain, for each category c ∈C, a list of representations Rc. Rc contains a number of

representations ri equal to the number of sentences in the dataset tagged with c. Each list

is composed by tokens s that obtained the highest Value-Zeroing score vz in their sentence,

with respect to p, Rc = [(s1,vz1), ...,(sn,vzn)]. Since some of these representations may

be duplicate, in the sense that the same token appeared in multiple sentences, and had

the highest Value-Zeroing score, we decided to aggregate those representations, in a way

that rewards their higher frequency count. We define b as a subset of Rc where all the

representations s are the same:

b = {(si,vzi),(s j,vz j), ...,(sk,vzk)|si = s j = ...= sk,(si,vzi),(s j,vz j), ...,(sk,vzk) ∈ Rc}

We aggregate all the representations in b by creating a single entry in the list Rc, (s∗,vz∗)

where the score is defined as the sum of the scores:

vz∗ = ∑
(s,vz)∈b

vz (3.2)

5In reality, we obtain a token which could not be a full word, but just a subpart of it. This is an issue that

arise from how the words are tokenized in Transformers models. To obtain the full word, we reconstruct it

by reconnecting all the tokens that are part of the word that the token with the highest Value-Zeroing score

is from. The Value-Zeroing score we consider for the full word is the one of the token that was selected.

We decided to avoid to aggregate the score of the full word in any way, because that could reward or punish

multi-token words unjustly.
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After doing this aggregation steps for all possible subsets b in Rc, and for every category

∀Rc : c ∈C, we have, for each category c, a set of representations Rc that we sort based of

vz in descending order, obtaining a ranked Representation Set.

Finally, we define a set of representations Ei, called the Representation Set of rank i where,

for each category c, we have the i ranked representation ri in Rc. E.g. in the set E0, for each

category we have the best ranked representation, while in the set E10, for each category

we have the representation that ranked 11th.

The method has been applied to the training dataset using all three methods of defining

p. We then evaluated their performances by testing the first ten best performing Represen-

tation Sets E0,E1, ...,E9 for all three methods, training ten models for each, using those

set of representations as the target labels, for a total of 30 trained models.

Then, after establishing that the End Of Sentence Method worked best, we decided to

evaluate it by using all the Representation Set we had extracted, which totalled to 23 mod-

els. Since we were limited to only 23 Representation Sets because of the TECHNOLOGY

category (which has a low representation in the training set, and only 23 representations

were extracted), we decided to exclude the TECHNOLOGY category and all its sentences

from D, and we evaluated the method with the rest of the categories by using the first 100

Representation Sets, E0,E1, ...,E99 training another 100 models. All the models were IT5,

with the same hyper-parameters as before.

3.3.2 Results

First, we evaluated the first ten Representation Sets E0, ...,E9 from each method to try and

see if one of them looked promising for finding a way to predict which representations

are going to work best. As we can see from Figure 3.6, the first two methods, Appended

Label and Appended Label with Prompt, don’t show any particularly interesting trend.

The first one has a slightly negative coefficient, and a Spearman Correlation of 0.03 with

a p-value of 0.934. With such a low correlation value and high p-value we can’t reject the

null hypothesis and the obtained trend is probably random. The same can be said for the

second method too, where we have a slightly positive trend, with a Spearman correlation

of 0.151 with a p-value of 0.67.
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Figure 3.6: Scatter-plots with regression lines where each point is a model. On the y-axis

we have the weighted F-Score on the test set and on the x-axis we have the rank of the

Representation Set used to train it. On the top-left we have the Label Appended method,

then on the top-right the Appended Label with Prompt method and on the bottom the EOS

method.

The third method, however, is a bit more interesting: there is a much more pronounced

negative trend, so, as the rank increases, the representations that have ranked lower also

have a negative effect on the F-Score, lowering it as well. The correlation is also promis-

ing, with a Spearman rank of -0.552 and a p-value of 0.098. While the p-value doesn’t

reach the standard cut-off value of 0.05, and thus we can’t reject the null hypothesis, with

the correlation being higher, and the trend much more apparent, we decided to keep testing

the EOS method with more representations.

First, we used all 23 representations that we had extracted from the training set. We

could extract only those representations because the TECHNOLOGY class has a very

low frequency in the training set, and thus we only had 23 sets that contained a label
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Figure 3.7: Scatter plot for the first 23 Representation Set extracted with the EOS method.

representation for that class. To both try the method on the complete dataset with all the

classes, and with a more significant number of Representation Sets, we decided to test

it first on all the 23 Representation Sets where TECHNOLOGY is included, and then

remove all TECHNOLOGY sentences from the dataset to extract a 100 Representation

Sets for the remaining classes. Then, 100 models were trained with those.

As we can see from Figure 3.7, the trend seems to be different from before and became

slightly positive, with a Spearman rank of 0.123 and a p-value of 0.578. While these results

seem to overturn the previous ones, we need to keep in mind that they could be a spurious

outcome due to the low number of points used. In fact, from this experiment and the ones

in Figure 3.6, we can’t really draw conclusions on the goodness of the proposed methods,

and these experiments should just be seen as preliminary tests done to decide which next

steps to take. Being that the EOS method was the only one showing interesting results, we

decided to continue the experiments and testing it on a higher number of Representation

Sets.

Testing the method on 100 sets revealed a correlation between the Representation Sets

rank we’ve extracted and the performance of the model trained on it. In particular, we have
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Figure 3.8: Scatter plot for the first 100 Representation Set extracted with the EOS method

from the training set where the low frequency TECHNOLOGY class was removed.

a Spearman Rank of -0.314 with a statistically significant p-value of 0.001. While we can’t

draw general conclusions about the method, it appears that, in this setting, selecting labels

from the training set using Attention attribution techniques like Value-Zeroing, is a help-

ful way to identify keywords in the data that have meaningful semantic connections that

IT5 can exploit to achieve higher performances. Using the EOS method we obtained a

difference of 0.05 in terms of F-Score between the highest F-Score value (0.68) obtained

by rank 20, and the lowest F-score value (0.63) obtained by rank 95. It’s interesting to

note that the worst performing model using the EOS Method reached the same results as

using the simple class names translated, which obtained an F-Score of 0.63. On this, is

also interesting to see that the Label Appended model, in the first ten representation ranks

we tested, never achieved above 0.62 of F-Score, while the Label Appended with Prompt,

while not showing any apparent correlation with the F-Score, in the first ten representation

ranks was consistently above 0.64 of F-Score with all its models, with the highest being

rank 9, reaching 0.653. The EOS method is superior to just using the class names trans-

lated: in fact, if we focus on the Representation Set of rank 0, which is the one the method
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Figure 3.9: Boxplot for each Category to show the variations in F-Score obtained using

the various Representation Sets.

indicates as the best, the model trained on that obtained a score of 0.656. While not being

the best Representation Set the method has produced, still surpassed the standard approach

of simply using the class names (weighted F-Score of 0.63).

In Figure 3.9 we can see the variation in F-Scores obtained with each class. As is

the case for the overall weighted F-scores, it appears that the average F-Scores for each

class are higher than when we did the previous experiments with Representation Sets

composed by 10 synonyms and 90 random words (See Section 3.2.2 and Figure 3.3). The

effect is much more pronounced in the lower frequency categories, where we have both

a higher average F-Score and a lower variance. For example, in the first experiment the

MEDICINE-AESTHETICS class had a a large number of outliers, some of which resulted

in very low F-scores values (down to 0). With this technique this does not happen, and

even considering the outliers, the class performances remain decent even in the worst
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scenarios. The same behaviour applies to the ENTERTAINMENT class.

On why the EOS methods outperforms the other two, it seems that, for building the

</s> character, the Encoder of the model uses particularly informative words that we can

leverage if used as label representation. The role of the EOS character and other simi-

lar characters that are used for modeling purposes, like the [CLS] character in BERT-like

models, is to be used as input for the final Language Modeling classifier. That pushes the

model during the pre-training phase to learn to construct a representation of such token

that summarize all the relevant informations in the sentence that are needed to complete

the language modeling task [Clark et al., 2019b]. So, by taking the highest Value-Zeroing

score for constructing </s>, we find tokens that are usually very contextually informative

to the language modeling task and contains a lot of useful information. It’s likely, then,

that this information is also useful during the fine-tuning phase, to construct that lexical

connection between input sentences and output classes. It must also be said that, when

using the other two techniques, we focus on injected tokens that are often appended with-

out sufficient context to justify their presence in the end of the sentence. It may be that

appending tokens to the end of the sentence may change the semantics of the sequence too

much. The first method, that simply appends the label to the end of the sentence, often

creates scenarios where the word appears to be out of place. The same applies for the

second method, but thanks to the prompt, this effect is less noticeable. This effect may

also be the reason why the first method is the worst performing one, while the Appended

Label with Prompt method achieve F-Scores almost as high as the EOS one but whithout

showing any useful correlation between the chosen representation and the model F-Score,

thus not being usable as a Label Representation Selection method.

3.3.3 Qualitative Representations Analysis

In Table 3.7 are reported the representations for each class for the best and worst perform-

ing models. Similarly to the experiments in Section 3.2, there doesn’t seem to be any

apparent pattern about which words work best, both from a morpho-syntactically and a

semantically point of view.

In the best performing set, the only two words that are somehow related to their class
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Class

Best Performing

Representation Set

(Rank 20) F-Score: 0.68

Worst Performing

Representation Set

Rank (95) F-Score: 0.63

BIKES risolvo temperatura

SPORTS schedina decidesse

ANIME troverai principiante

AUTO-MOTO premuto abbassato

NATURE gippi causarne

METAL-DETECTING cosa pistolina

MEDICINE-AESTHETICS capelluto soffermarmi

CELEBRITIES ilaria scherzo

SMOKE eccola piaciuto,proviamo

ENTERTAINMENT origini dragonette

Table 3.7: Table showing the representations for the best performing and worst performing

set in the first 100 Representation Sets extracted from the training set where the sentences

of the TECHNOLOGY class were removed.

seems to be schedina for SPORTS, referring to the betting ticket used to bet for sports

games, and ilaria for CELEBRITIES, referring to the proper noun that could be the name

of some famous Italian celebrity. For the worst representation, the only in-domain word we

find is, again, a proper noun: dragonette, which is the name of a Canadian band. Another

interesting word is piaciuto,provato, which is a typo where a space was missing after the

comma. While the tokenizer divided the word into multiple sub-tokens, no special space

character was found in the tokens that formed the word, and our system correctly re-built

it to be a single word. Our heuristic also rewarded frequency, nonetheless, of the best

performing representations only four of these representations had been chosen as the most

salient token in the text multiple times: schedina (3 times), troverai (2 times), premuto (2

times), gippi (2 times). This could mean that we should re-evaluate how important fre-

quency is, and maybe change the heuristic of aggregation (See Equation 3.2) to something

that doesn’t reward the frequency as much.
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To better understand the role of the representations frequencies in the training set we’ve

calculated both the raw frequency of each representation in the whole dataset, and the

TF-IDF of the representations. We’ve then calculated the Spearman Rank between the

frequencies, the TF-IDFs, the obtained F-Score and the Representation Set rank the rep-

resentations are in. The TF-IDF has been calculated by treating all the documents of a

single category as a single document, and the documents’ length has been calculated as

the number of tokens inside it. We’ve obtained ten documents with the following lengths:

• ANIME: 154.347;

• BIKES: 14.078;

• SPORTS: 163.142;

• AUTO-MOTO: 118.859;

• NATURE: 21.595;

• METAL-DETECTING: 40.722;

• MEDICINE-AESTHETICS: 16.070;

• CELEBRITIES: 25.555;

• SMOKE: 41.040;

• ENTERTAINMENT: 18.216;

By looking at Table 3.8, we can see that Frequency doesn’t correlate to any class

with the obtained F-Score. This, again, confirms that the role of the absolute frequency

of a certain term inside the training set doesn’t seem to have any positive nor negative

effect on the ability of the model to use such representation for its classes. However,

by using an aggregation formula that rewarded frequency, we can see the effect that the

absolute frequency had on the placement of the representation. In particular, for two

classes (SPORTS and AUTO-MOTO) more frequent representations had a higher chances

to be placed in the best ranks. This could mean that in these particular categories, the most

informative words are frequently the same.
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Class
F-score x

Frequency

Rank x

Frequency

F-Score x

TF-IDF

Rank x

TF-IDF

BIKES -0.080 0.080 -0.118 0.007

SPORTS 0.138 -0.307* 0.213* -0.499*

ANIME 0.125 -0.101 0.283* -0.408*

AUTO-MOTO 0.147 -0.346* 0.081 -0.290*

NATURE 0.049 -0.026 0.148 -0.159

METAL-DETECTING -0.053 -0.128 0.146 -0.204*

MEDICINE-AESTHETICS 0.152 -0.149 0.025 -0.067

CELEBRITIES -0.182 -0.014 0.031 -0.329*

SMOKE 0.030 -0.034 0.080 -0.388*

ENTERTAINMENT -0.099 -0.005 -0.103 0.004

Table 3.8: Spearman ranks between the F-Score and Representation rank against the raw

frequency of the representations in the dataset, and the TF-IDF of the representations

calculated as all the sentence of a certain category are part of a document. Statistically

significant correlation are marked with *.

For the TF-IDFs, instead, we’ve got two minor correlations with the F-Score. It seems

that for SPORTS and ANIME, using in-domain words, that don’t appear as often in the

other categories, had a slightly positive impact on performances. We’ve also empirically

observed that SPORTS and ANIME are also the two categories where our model chose

a lot of domain-specific words. In fact, the first ten ranked representations for the two

categories are all domain-specific words:

• for SPORTS: campionato, gol, pareggio, centrocampo, milan, juventus, atalanta,

tifosi, trequartista and derby;

• for ANIME: streaming/download, graffio, manga, pokémon, pokemon, ko, morso,

pokèmon, cmq, drago6.

6morso, graffio and ko are all domain-specific words in the settings of the popular anime, cartoon and

video-game Pokémon, with the first two being moves and the latter being a specific status.
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Again, the correlation between the TF-IDF and the representation rank was to be expected,

based on the heuristic we’ve used to aggregate the representations. We’ve also empirically

noticed that the method we’ve used to extract the representations was keen on choosing

domain-specific, low frequency words. Which is why often it chose typos and similar

words with errors in them. This is probably due to the fact that low frequency words

are usually full words with much more semantic value in them, and by being domain-

specific they carry high contextual information, useful for constructing the other tokens’

representations. This could explain why the TF-IDF, which is a metric that is specifically

built to find such words, correlates so highly and significantly with the extracted words’

ranks.

Class
Subtoken length x

F-Score

Subtoken Lenght x

Ranking

BIKES -0.031 0.029

SPORTS -0.166 0.303*

ANIME 0.059 -0.071

AUTO-MOTO -0.408* 0.126

NATURE 0.113 0.132

METAL-DETECTING -0.130 0.181

MEDICINE-AESTHETICS -0.116 0.074

CELEBRITIES -0.071 0.210*

SMOKE -0.090 0.127

ENTERTEINMENT 0.116 0.048

Table 3.9: Spearman ranks between the F-Score and representation ranks against the num-

ber of sub-tokens each representation is built with. Statistically significant correlations are

marked with *.

In Table 3.9 we’ve also tried to look if there is any correlation between both the F-

Score and the Representation rank with the number of sub-tokens of the representations.

In fact, Transformers models tokenize their text by splitting them into sub-word parts; this

is done to optimize the Vocabulary size, while, at the same time, keeping some meaningful
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Figure 3.10: Distribution of the Parts-of-Speech across all the representation extracted

using the EOS method.

morpho-syntactic structure of the words. From our results, we can see that subtoken length

doesn’t seem to affect neither the model’s performances nor our selection technique seem

to be have any kind of preference towards words that are split into more or less quantity

of sub-tokens. The only two exception are AUTO-MOTO, where a higher number of sub-

tokens lead to a decrease in performances, and SPORTS, where our model seemed to place

words with a higher subtoken number to lower places in the ranking system.

We’ve also looked at the Part-of-Speech for the representations, both globally (See Fig-

ure 3.10) and on a per-class basis (See Figure 3.11), to see if we could find any interesting

preferences in our method representation choice. The PoS are extracted from an Italian

Word Form Vocabulary developed by the Institute for Computational Linguistics (ILC) of

the National Research Council of Italy (CNR), that contains all the word forms and their

possible Parts-of-Speech from the Italian language. We can see that, globally, the most

frequent PoS are UNKNOWN, VERB, NOUN and ADJ. The class UNKNOWN contains

the words that are not found in the Word Form Vocabulary, and these usually consists of
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typos, English words, proper noun, etc. and are going to be seen more in detail for each

category. The category with the highest number of UNKNOWNs are ENTERTAINMENT,

CELEBERITIES, ANIME and SPORTS:

• in ENTERTAINMENT, the majority of the UNKNOWNs are typos (e.g. cioe in-

stead of cioè), abbreviations (e.g. nnt instead of niente), words with an increased

vocal length in the last character (e.g. iniziaaaaaa instead of inizia) or english words

(e.g. wish);

• in CELEBRITIES, the majority are proper nouns (e.g. alessia, mirco, federica, etc.)

and typos;

• in ANIME, the majority are proper nouns of video-games or tv shows characters

(e.g. pokémon or charmender) or Japanese words (e.g. manga);

• in SPORTS, the majority are proper nouns of soccer teams or players (e.g. milan,

juventus, higuain, etc.) or match names composed by multiple teams or nation

names (e.g. italia-uruguay or brasile-olanda) that our system didn’t split since they

didn’t contain any spaces.

We can also see that for BIKES, NATURE and AUTO-MOTO more VERBs are chosen

instead of NOUNs, while for METAL-DETECTING, SPORTS and SMOKE the opposite

is true. That being said, all the Parts-of-Speech seem reasonably distributed and it seems

that no particular one is preferred by the method when choosing representations from the

training set.
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Figure 3.11: Distribution of Parts-of-Speech per Category of the representations extracted

using the EOS method.
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Conclusions

In recent years, with the advent of the Transformers architecture, a revolution has begun

in the field of Natural Language Processing (NLP). These new Neural Language Models

aim to produce probability distribution over the natural human language, which has a

lot of intrinsic properties, like the fact that is a dynamic system of communication, with

loose rules and endless possibilities for creativity, that makes it very hard to model. These

models succeed in this challenging tasks by creating dense representations of words that

also take into consideration the context those words are found in. With the huge success of

this architecture, text generation models, or text-to-text models, became better than ever

before, and gained a lot of attention.

With this new framework reaching new state-of-the-art performances, [Raffel et al.,

2019] proposed to use it as a unifying method to solve all kinds of NLP tasks. By taking

any task, and casting it to have both textual input and textual output, this model could be

trained to solve it, with the advantage of having just one framework to work with. That

could enable the comparison of different tasks, different pre-training objectives, different

training datasets, etc.

In this thesis, we challenged this idea by asking if reasonably sized text-to-text models

could be used to do classification tasks, which are a type of problems that aren’t usually

solved by generation models. Then, we also tested how important the way we cast this

problems into textual form is, by focusing on how to verbalize the class values into text

sequences that the model can produce. Finally, we presented a method that finds label

representation from the training set of the task by using Attention attribution methods.

Can Text-to-Text Models classify successfully?

We answered this first question during the first of the presented experiments. We evaluated

the performance of IT5, a text-to-text model pre-trained on the Italian language, against

a series of baselines in various classification tasks taken from TAG-it, an EVALITA 2020

shared task. The objective was to classify the gender and age of the author and the topic
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of discussion of a single forum post. We tested IT5 and an Italian version of BERT in

single- and multi-task scenarios, and also against an IT5 and a BERT without pre-training.

The results showed that while BERT outperformed IT5 in both scenarios, the text-to-text

model still achieved fairly reasonable results, especially in multi-task. Also, we found

out that BERT pre-training had a huge impact on its performance, while IT5 pre-training

didn’t seem to affect the model as much, with the non pre-trained model actually scoring

better results in the Gender and Age classification tasks. IT5 also showed some interest-

ing behaviour in the Topic classification task, sometimes generating labels that weren’t

in the set of pre-determined ones, that empirically resulted more appropriated for the text

they were generated for. Finally, some preliminary tests using a shuffled dataset where

all the labels for a certain class were associated to another one (e.g. medicina was associ-

ated to AUTO-MOTO, instead of MEDICINE-AESTHETICS, for the Topic classification

task) showed that, for the Topic classification task, having a meaningful lexical connection

between input and generated output is of huge importance for performances.

How important are label representation for performances?

Having assessed that text-to-text models are reasonable to use for classification, we fo-

cused on the importance of having different representations for the class names.

We experimented on that by creating 100 sets of label representation for the Topic classifi-

cation task. We first chose 10 synonyms of the class names and 90 random words from the

ItWac corpus for each class, and then ranked these 100 words in descending order using

the cosine distance between these representation and the class name they should repre-

sent. Then we trained 100 models using these representation sets, with the set of rank

0 containing the most similar representations to each class, and rank 99 containing the

least similar representations to each class. A hundred IT5 models were trained using those

representation and we observed a remarkable variation in performances depending on the

representation used. We couldn’t find any correlation between the cosine similarity of the

representations to their class name and the performance of the model trained on them.

Nonetheless, we can say that for this task there is an important variation of performances

based solely upon the way we represent the labels of the target variable, and to be able to
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use this relatively small text-to-text models for classification is of high importance to find

a way to choose this representation without having to train a bunch of different models.

Can we find a way to choose the optimal label representations?

Finally, we tackled the problem of finding a way to select the label representation that

optimizes the model’s performances. To do so, we built an heuristic based on Attention

attribution methods.

We experimented by injecting tokens to the training set sentences and then looking at

which words from those sentences are used to build the representation of the tokens we

injected. To do so, we relied on an Attention attribution method called Value-Zeroing.

After some tests, it seems that the best method for choosing the tokens was to look at

which part of the sentences were used to build the representation of the End Of Sentence

special token. By doing so, we were able to extract 100 representation sets. These were

then ranked in descending order by their Value-Zeroing score, aggregating the score of

representations that were selected multiple times in different sentences (to reward their

higher frequency of selection).

We trained another hundred IT5 models using these representations and calculated

their F-scores. We found a statistically significant negative correlation between the rep-

resentation set rank and the model F-score, meaning that our method seems to correctly

predict which representations are going to work best (Spearman Rank: -0.314).

We did some qualitative analysis on the words we used as representation to see if any

interesting trend appeared, and one worth noting is that the model’s class-specific F-score

seemed correlated with the TF-IDF of the chosen words for two categories. This is in line

with empiric observation of the fact that using Value-Zeroing for choosing representation

seemed to yield mostly domain specific and words with a low global frequency, which

often have a high TF-IDF.
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Considerations and Future Work

The work described in this thesis exemplifies an interesting approach to deal with classi-

fication when using text-to-text models. In particular, we focused on one area of research,

being Label Representation Selection, that has very few works published about. We be-

lieve that having text-to-text as a unifying framework to work with is ultimately beneficial,

but comes with a price. Most of the generation models that work really well are billion

parameter networks that are costly to train and to use, and aren’t accessible to most of

the population. To scale down this giant architectures in a meaningful way, we need to

solve problems that those huge models can ignore thanks to their over-parametrization.

There is, indeed, the need to identify and solve a number of different problems, with the

aim of creating a truly unifying framework that is accessible both from a difficulty of use

point-of-view, but also from a computational cost point-of-view. Right now, even the open

source Large Language Models are hardly used directly in production, due to their hefty

costs.

To continue this work, it would be enlightening to test this Label Representation Se-

lection technique across different model architectures (e.g. auto-regressive ones, such as

GPT-like models), across different classification tasks and on multiple languages. While

we worked on classification and specifically Label Representation Selection, there is also

the need to find techniques that solve problem linked to the other uses of the text-to-text

framework, such as regression, generation, translation, etc.

In conclusion, this thesis provides the foundations to work towards smaller but better

text-to-text language models capable of solving any kind of task they’re trained for, pro-

viding simultaneously both the more intuitive text-to-text framework and the ability to be

put to use in production, without the excessive computational costs required by the Largest

Language Models popular today.
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